4-Volume \(d^4 x\) and Lagrangian Density \(\mathcal{L}\)

Since spacetime is equivalent under relativity, physicists use the Principle of Relativity and the Principle of Least Action to write the Action \(S\) in scalar form, ensuring that \(\delta S = 0\) in any coordinate system. The Actions we listed earlier are: $$S_P=-mc^2 \int _a^b d\tau $$ $$S_{PF}=-{e\over c} \int _a^b A_\mu dx^\mu $$ $$S=S_P+S_{PF}=-mc^2 \int _a^b d\tau -{e\over c} \int _a^b A_\mu dx^\mu $$ $$=\int _a^b -\gamma mc^2-\gamma e \phi+{e\over c} \overrightarrow{A} \cdot \gamma \overrightarrow{v} dt =\int _a^b Ldt$$ Although these Actions satisfy the scalar requirement, the Lagrangian \(L\) itself is not a scalar, as it varies under different coordinate systems. Physicists, therefore, aim to rewrite the Lagrangian \(L\) as a scalar. We define the 4-Volume \(d^4 x=dc\tau dV=dc\tau dxdydz\) and rewrite the original Action as: $$S_P=-mc^2 \int _a^b d\tau =-\int \rho_m dV c^2 \int _a^b d\tau $$ $$=-โˆฌ \rho_m cdc\tau dV =\int -\rho_m cd^4 x $$ $$S_{PF}=-{e\over c} \int _a^b A_\mu dx^\mu =-{\int \rho_e dV \over c} \int _a^b A_\mu {dx^\mu \over d\tau} d\tau $$ $$=-{1 \over c} โˆฌ \rho_e A_\mu u^\mu d\tau dV =-{1 \over c^2} โˆฌ A_\mu J^\mu dc\tau d^4 x $$ $$=-{1 \over c^2} \int A_\mu J^\mu d^4 x $$ Here, \(J = J^\mu \hat{e} _\mu = \rho_e u^\mu \hat{e} _\mu\) is the 4-current density. Notably, \(d^4 x\) is an invariant, making it a scalar. Additionally, when we add the EM Field Action \(S_F\): $$S_F=-{1 \over 16\pi c} \int F_{\mu \nu} F^{\mu \nu} d^4 x $$ $$S=S_P+S_{PF}+S_F$$ $$=\int -\rho_m c-{1\over c^2} A_\mu J^\mu -{1 \over 16\pi c} F_{\mu \nu} F^{\mu \nu} d^4 x$$ $$ \equiv \int \mathcal{L} d^4 x $$ Since the 4-Volume \(d^4 x\) is a scalar and the Action is also a scalar, \(\mathcal{L}\) must be a scalar as well. We call \(\mathcal{L}\) the Lagrangian density. The Lagrangian density \(\mathcal{L}\) remains a scalar and is invariant in any coordinate system: $$\mathcal{L}=-\rho_m c-{1\over c^2} A_\mu J^\mu -{1 \over 16\pi c} F_{\mu \nu} F^{\mu \nu} $$

Advanced: \(d^4 x\) is an invariant
Physical Proof
Due to Time Dilation and Length Contraction being opposite effects, if \(\tau\) and \(\bar{x}\) are the proper time and proper length: $$t=\gamma \tau $$ $$x={\bar{x} \over \gamma} $$ Therefore: $$dctdx=dc\left(\gamma \tau \right)d{\bar{x} \over \gamma }=dc\tau d\bar{x}$$ Mathematical Proof
Recall the Jacobian \(J\): $$dxdy=rdrdฮธ=J\left(r,\theta\right)drd\theta$$ Where: $$J\left(r,\theta\right)=\left| \begin{matrix} {\partial x \over \partial r} & {\partial x \over \partial \theta} \\ {\partial y \over \partial r} & {\partial y \over \partial \theta} \end{matrix} \right| =\left| \begin{matrix} {\partial rcos\theta \over \partial r} & {\partial rcos\theta \over \partial \theta} \\ {\partial rsin\theta \over \partial r} & {\partial rsin\theta \over \partial \theta} \end{matrix} \right| $$ $$=\left| \begin{matrix} { cos\theta} & { -rsin\theta} \\ { sin\theta} & { rcos\theta} \end{matrix} \right|=r $$ Similarly: $$dc\bar{t} d\bar{x}=J\left(ct,x\right)dctdx=\left| \begin{matrix} {\partial c\bar{t} \over \partial ct} & {\partial c\bar{t} \over \partial x} \\ {\partial \bar{x} \over \partial ct} & {\partial \bar{x} \over \partial x} \end{matrix} \right|dctdx$$ Recall the Lorentz transformation: $$c\bar{t} =\gamma (ct-\beta x)$$ $$\bar{x}=\gamma (x-\beta ct)$$ Substituting these back: $$dc\bar{t} d \bar{x}=\left| \begin{matrix} \gamma & -\beta \gamma \\ -\beta \gamma & \gamma \end{matrix} \right|dctdx $$ $$=\gamma ^2 (1-\beta ^2 )dctdx=dctdx$$ Thus, \(d^4 x\) is an invariant under Lorentz transformation.

Originally written in Chinese by the author, these articles are translated into English to invite cross-language resonance.