Noether Theorem in Field Theory
When discussing variational principles, Noether's theorem is an essential companion. Noether's theorem states that if a system's Lagrangian \(\phi\) possesses a continuous transformation \(\phi \to \phi +\delta \alpha\) that leaves the action invariant (\(\delta S=0\)), there exists a corresponding conserved current. This can be applied to:
$$Time-translation-invariance \leftrightarrow Energy-conservation$$
$$Spatial-translation-invariance \leftrightarrow Momentum-conservation$$
The generalized proof is as follows: Given the Lagrangian density \(\mathcal{L}[\phi (x^\alpha ),\partial _\mu \phi (x^\alpha ),x^\mu ]\), we now consider variations with respect to both the field \(\phi\) and spacetime coordinates \(x^\mu\):
$$x^\mu \to \bar{x} ^\mu =x^\mu +\delta x^\mu $$
$$\phi \to \bar{\phi}=\phi +\delta \phi $$
However, since \(\phi =\phi (x^\alpha )\) is a function of spacetime, after the variations of both \(\phi\) and \(x^\mu\), \(\phi (x^\alpha )\to \bar{\phi} ( \bar{x} ^\alpha )\) can be expressed as \(\bar{\phi} ( \bar{x} ^\alpha )\equiv \phi (x^\alpha )+\Delta\phi \), where:
$$\Delta\phi =\bar{\phi} ( \bar{x} ^\alpha )-\phi (x^\alpha )$$
$$=\bar{\phi} ( \bar{x} ^\alpha )-\phi ( \bar{x} ^\alpha )+\phi ( \bar{x} ^\alpha )-\phi (x^\alpha )$$
$$=\delta \phi +{\partial \phi \over \partial x^\alpha } \delta x^\alpha$$
Noether's theorem examines the difference in the action after variation:
$$\delta S=\delta \int \mathcal{L}[\phi (x^\alpha ),\partial _\mu \phi (x^\alpha ),x^\mu ] d^4 x $$
$$=\int \mathcal{L}[\bar{\phi} ( \bar{x} ^\alpha ),\partial _\mu \bar{\phi} ( \bar{x} ^\alpha ), \bar{x} ^\mu ] d^4 x -\int \mathcal{L}[\phi (x^\alpha ),\partial _\mu \phi (x^\alpha ),x^\mu ] d^4 x $$
It is clear that even the integral's 4-volume \(d^4 \bar{x}\) changes. Consider the differential product:
\(\delta S=\delta \int \mathcal{L}d^4 x =\int \delta\mathcal{L} d ^4 x +\int \mathcal{L}\delta d^4 x \)
The first term, \(\delta \mathcal{L}\), must be handled with care:
$$\delta \mathcal{L}=\mathcal{L}[\bar{\phi} ( \bar{x} ^\alpha ),\partial _\mu \bar{\phi} ( \bar{x} ^\alpha ), \bar{x} ^\mu ]-\mathcal{L}[\phi (x^\alpha ),\partial _\mu \phi (x^\alpha ),x^\mu ]$$
$$=\mathcal{L}[\bar{\phi} ( \bar{x} ^\alpha ),\partial _\mu \bar{\phi} ( \bar{x} ^\alpha ), \bar{x} ^\mu ]-\mathcal{L}[\phi ( \bar{x} ^\alpha ),\partial _\mu \phi ( \bar{x} ^\alpha ), \bar{x} ^\mu ]+\mathcal{L}[\phi ( \bar{x} ^\alpha ),\partial _\mu \phi ( \bar{x} ^\alpha ), \bar{x} ^\mu ]-\mathcal{L}[\phi (x^\alpha ),\partial _\mu \phi (x^\alpha ),x^\mu ]$$
$$={\mathcal{L}[\phi +\delta \phi ,\partial _\mu \phi +\delta (\partial _\mu \phi ), \bar{x} ^\mu ]-L[\phi ,\partial _\mu \phi , \bar{x} ^\mu ]}+{\mathcal{L}[\phi ,\partial _\mu \phi , \bar{x} ^\mu ]-L[\phi ,\partial _\mu \phi ,x^\mu ]}$$
$$={{\partial \mathcal{L}\over\partial \phi} \delta \phi +{\partial \mathcal{L}\over\partial (\partial _\mu \phi )} \delta (\partial _\mu \phi )}+{{\partial \mathcal{L}\over \partial x^\mu } \delta x^\mu }$$
Using \(\partial _\mu \) to bring to the front:
$$={{\partial \mathcal{L}\over\partial \phi} \delta \phi -\partial _\mu \left({\partial \mathcal{L}\over\partial (\partial _\mu \phi )} \right)\delta \phi +\partial _\mu \left({\partial \mathcal{L}\over\partial (\partial _\mu \phi )} \delta \phi \right)}+{{\partial \mathcal{L}\over \partial x^\mu } \delta x^\mu }$$
Note that \(\left[{\partial \mathcal{L}\over\partial \phi} -\partial _\mu \left({\partial \mathcal{L}\over\partial (\partial _\mu \phi )} \right)\right]\delta \phi\) is the Euler-Lagrange equation, which equals zero. Therefore:
$$\delta \mathcal{L}=\partial _\mu \left({\partial \mathcal{L}\over\partial (\partial _\mu \phi )} \delta \phi \right)+\partial _\mu \mathcal{L}*\delta x^\mu $$
The second term, \(\delta d^4 x\), involves the Jacobian:
$$\int \mathcal{L}\delta d^4 x =\int \mathcal{L}d^4 \bar{x} -\int \mathcal{L}d^4 x $$
$$d^4 \bar{x}=J\left({\partial \bar{x} ^\mu \over\partial x^\nu }\right) d^4 x$$
\(J\left({\partial \bar{x} ^\mu \over\partial x^\nu }\right)\) is the Jacobian determinant:
$${\partial \bar{x} ^\mu \over\partial x^\nu }={\partial (x^\mu +\delta x^\mu )\over\partial x^\nu }= \delta ^\mu _\nu +\partial _\nu \delta x^\mu $$
The Jacobian determinant is calculated as:
$$J\left({\partial \bar{x} ^\mu \over\partial x^\nu }\right)=1+\partial _\mu \delta x^\mu $$
So:
$$\int \mathcal{L}\delta d^4 x =\int \mathcal{L}*\partial _\mu \delta x^\mu d^4 x $$
Combining the two terms:
$$\delta S=\delta \int \mathcal{L}d^4 x =\int \left[\partial _\mu \left({\partial \mathcal{L}\over\partial (\partial _\mu \phi )} \delta \phi \right)+\partial _\mu \mathcal{L}*\delta x^\mu \right] d^4 x +\int \left[\mathcal{L} *\partial _\mu \delta x^\mu \right] d^4 x $$
$$=\int \partial _\mu \left({\partial \mathcal{L}\over\partial (\partial _\mu \phi )} \delta \phi \right)+\partial _\mu (\mathcal{L}\delta x^\mu ) d^4 x $$
$$=\int \partial _\mu \left({\partial \mathcal{L}\over\partial (\partial _\mu \phi )} \delta \phi +\mathcal{L}\delta x^\mu \right) d^4 x $$
$$=\int \partial _\mu \left({\partial \mathcal{L}\over\partial (\partial _\mu \phi )} \Delta\phi -\left({\partial \mathcal{L}\over\partial (\partial _\mu \phi )} \partial _\alpha \phi - \delta ^\mu _\alpha \mathcal{L}\right)\delta x^\alpha \right) d^4 x$$
Set
$$\left(\begin{matrix} \delta x^\alpha \\ \Delta\phi \end{matrix}\right)=\varepsilon\left(\begin{matrix} ฮง^\alpha \\ \Psi \end{matrix}\right)$$
\(ฮง^\alpha\) and \(\Psi\) are symmetry generators:
$$\delta S=\varepsilon \int \partial _\mu \left({\partial \mathcal{L}\over\partial (\partial _\mu \phi )} \Psi-\left({\partial \mathcal{L}\over\partial (\partial _\mu \phi )} \partial _\alpha \phi - \delta ^\mu _\alpha \mathcal{L}\right) ฮง^\alpha \right) d^4 x =0$$
Since \(\varepsilon \) is arbitrary:
$$\partial _\mu \left({\partial \mathcal{L}\over\partial (\partial _\mu \phi )} \Psi-\left({\partial \mathcal{L}\over\partial (\partial _\mu \phi )} \partial _\alpha \phi - \delta ^\mu _\alpha \mathcal{L}\right) ฮง^\alpha \right)\equiv \partial _\mu N^\mu =0$$
Define the Noether current:
$$N^\mu \equiv {\partial \mathcal{L}\over\partial (\partial _\mu \phi )} \Psi-\left({\partial \mathcal{L}\over\partial (\partial _\mu \phi )} \partial _\alpha \phi - \delta ^\mu _\alpha \mathcal{L}\right) ฮง^\alpha $$
Where \({\partial \mathcal{L}\over\partial (\partial _\mu \phi )}\) corresponds to the conserved current for the symmetry transformation \(\Psi\) of the field \(\phi\), and \(\left({\partial \mathcal{L}\over\partial (\partial _\mu \phi )} \partial _\alpha \phi - \delta ^\mu _\alpha \mathcal{L}\right)\) corresponds to the conserved current under the transformation \(ฮง^\alpha\) of spacetime \(x^\mu\).
For vector fields \(\alpha^\nu\):
$$N^\mu \equiv {\partial \mathcal{L}\over\partial (\partial _\mu \alpha^\nu )} \Psi^\nu-\left({\partial \mathcal{L}\over\partial (\partial _\mu \alpha^\nu )} \partial _\alpha \alpha^\nu- \delta ^\mu _\alpha \mathcal{L}\right) ฮง^\alpha $$
Originally written in Chinese by the author, these articles are translated into English to invite cross-language resonance.