Non-Abelian Noether's Canonical Energy Momentum Tensor
\section{Introduction}
The energy momentum tensor should be symmetric due to the conservation of angular momentum \autocite{landau2013classical}. For a given Lagrangian $\mathscr{L}$ of a field, there are two major ways to obtain the energy momentum tensor: from general relativity or from the canonical way. The energy momentum tensor obtained from general relativity is automatically symmetric. However, the canonical energy momentum is not symmetric, in general, if the field is not a scalar field. This situation occurs in an electromagnetic field. This asymmetric issue also causes the canonical energy-momentum tensor not to be gauge-invariant. Several ways are used to fix this asymmetric and resolve the gauge invariant, but all seem unnatural \autocite{freese2022noether}.
\section{Abelian Gauge Theory (Electromagnetic Field)} \label{sec:Ab}
\subsection{Derivation}
We denote $p$ is a point in spacetime manifold $M$, $A(p)$ as gauge potential 1-form of the electromagnetic field, and the field strength is $F = dA$. Let $G$ be a Lie group acting smoothly on a spacetime manifold $M$ from the left, and let $\mathfrak{g}$ denote the Lie algebra of $G$.
For a Lie algebra element $X_{\mathfrak{g}} \in \mathfrak{g}$, when applying an infinitesimal group action $g = \exp(t X_{\mathfrak{g}})$ to a point $p \in M$, the point is actively moved to $g * p$. The induced vector field ${\delta X}(p) \in \mathfrak{X}(M)$ is defined via the infinitesimal action:
\begin{align*}
{\delta X}(p) := \left. \frac{d}{dt} \right|_{t=0} \left( \exp(-t X_{\mathfrak{g}}) * p \right) = - T_e p (X_{\mathfrak{g}}).
\end{align*}
In Noether's variational framework, one compares physical fieldsโsuch as the gauge potential 1-form $A$โat the same spacetime point before and after the transformation. This requires pulling back the transformed field to the original point $p$ for comparison.
In this context, the Lie derivative reflects the infinitesimal pullback of the field to the original point, which inherently introduces a negative direction in the group flow. This geometric interpretation explains the frequently observed identity:
\begin{align*}
\delta A_\nu = - \left(\hat{\mathcal{L}}_{\delta X} A\right)_\nu=-\left(A_{\nu,\gamma}\delta X^\gamma+A_\gamma \delta {X^\gamma}_{,\nu}\right),
\end{align*}
which expresses that the variation of $A$ under spacetime symmetry is equivalent to its Lie derivative along the \emph{backward} flow generated by $X$. This convention aligns with the principle that physical variations are evaluated at fixed spacetime points in the coordinate chart.
The Lagrangian $\mathscr{L}_{EM}$ and the action $S$ of electromagnetic field are
\begin{align*}
\mathscr{L}_{EM} = -\frac{1}{16\pi c} g^{\mu\alpha}g^{\nu\beta}F_{\alpha\beta}F_{\mu\nu}\sqrt{-g}
\end{align*}
and
\[ S = \int d^4x \, \mathscr{L}_{EM}[A_\mu(x^\gamma), A_{\nu,\mu}(x^\gamma), x^\gamma] \]
We derive the equation of motion (EoM) and Noether theorem follow standard procedure. The variation of action $\Delta S$ divides into two terms:
\[ \delta S = \int \delta d^4x \cdot \mathscr{L}_{EM} + \int d^4x \cdot \delta \mathscr{L}_{EM} \]
The first term is the variation of volume form, which is \autocite{ryder1996quantum}
\[ \delta d^4x = {\delta{X}^\gamma }_{,\gamma} \cdot d^4x \]
\noindent The second term is the variation of $\mathscr{L}_{EM}$
\begin{align} \label{eq:ab_lag}
\Delta \mathscr{L}_{EM} &= \mathscr{L}_{EM}[\tilde{A}_\nu(\tilde{x}^\gamma), \tilde{A}_{\nu,\mu}(\tilde{x}^\gamma), \tilde{x}^\gamma] - \mathscr{L}_{EM}[A_\nu(x^\gamma), A_{\nu,\mu}(x^\gamma), x^\gamma] \\
& = \left[ \frac{\partial \mathscr{L}_{EM}}{\partial A_\nu} \delta A_\nu + \frac{\partial \mathscr{L}_{EM}}{\partial (\partial_\mu A_\nu)} \delta (\partial_\mu A_\nu) \right] (x^\gamma) + \left[ {\mathscr{L}_{EM}}_{, \gamma} \delta x^\gamma \right] (x^\gamma) + O(\delta^2) \nonumber
\end{align}
\noindent Hence, $\Delta S$ is
\begin{align} \label{eq:Delta S_ab}
\Delta S = \int \left[ \frac{\partial \mathscr{L}}{\partial A_\nu} - \partial_\mu\left(\frac{\partial\mathscr{L}_{EM}}{\partial(\partial_\mu A_\nu)}\right) \right] \delta A_\nu d^4 x + \int \left[ \partial_\mu\left(\frac{\partial \mathscr{L}_{EM}}{\partial (\partial_\mu A_\nu)}\delta A_\nu\right) + (\mathscr{L}_{EM} \delta x^\gamma)_{,\gamma}\right] d^4 x
\end{align}
\noindent The EoM is
\[
\frac{\partial \mathscr{L}_{EM}}{\partial A_\nu} - \partial_\mu \left( \frac{\partial \mathscr{L}_{EM}}{\partial(\partial_\mu A_\nu)} \right) = 0
\]
\noindent Now we introduce the total variation $\Delta A = \delta A + \hat{\mathcal{L}}_{\delta x} A $, instead of the traditional $\Delta A_\nu=\delta A_\nu +\delta x^\mu \partial_\mu A_\nu$. Using $\delta A_\nu = \Delta A_\nu - A_{\nu,\gamma} \delta x^\gamma - A_\gamma \delta x^\gamma_{,\nu}$,
\begin{align*}
\Delta S &= \int \{EoM\} \delta A_\nu d^4 x + \int \partial_\mu\left[\frac{\partial \mathscr{L}_{EM}}{\partial(\partial_\mu A_\nu)} (\Delta A_\nu - A_{\nu,\gamma}\delta x^\gamma - A_\gamma \delta x_{,\nu}^\gamma) + \delta^\mu_\gamma\mathscr{L}_{EM} \delta x^\gamma\right]d^4x\\
&= \int \{EoM\} \delta A_\nu d^4 x + \int \partial_\mu \left[ \frac{\partial \mathscr{L}_{EM}}{\partial(\partial_\mu A_\nu)}\Delta A_\nu - \left( \frac{\partial \mathscr{L}_{EM}}{\partial(\partial_\mu A_\nu)}A_{\nu,\gamma} \delta x^\gamma + \underbracket[0.4pt][0pt]{\frac{\partial \mathscr{L}_{EM}}{\partial(\partial_\mu A_\nu)}A_\gamma \delta x^\gamma_{,\nu}}_{(*)} - \delta^\mu_\gamma \mathscr{L}_{EM}\delta x^\gamma\right)\right]d^4x
\end{align*}
\noindent Evaluate the $(*)$ term:
\begin{align*}
\underbracket[0.4pt][0pt]{\partial_\mu \left[ \frac{\partial \mathscr{L}_{EM}}{\partial(\partial_\mu A_\nu)} A_{\gamma} \delta x^\gamma_{,\nu} \right]}_{(*)}
&= \underbracket[0.4pt][0pt]{\left[ \frac{\partial \mathscr{L}_{EM}}{\partial (\partial_\mu A_\nu)} A_\gamma \delta x^\gamma \right]_{,\nu \mu}}_{(*1)} -\partial_\mu \left[ \underbracket[0.4pt][0pt]{ \left( \frac{\partial \mathscr{L}_{EM}}{ \partial (\partial_\mu A_\nu)}\right)_{,\nu} A_\gamma \delta x^\gamma}_{(*2)}\right] -\partial_\mu \left[ \underbracket[0.4pt][0pt]{\frac{\partial \mathscr{L}_{EM}}{\partial(\partial_\mu A_\nu)}A_{\gamma,\nu} \delta x^\gamma}_{(*3)} \right]
\end{align*}
Note that
$\frac{\partial\mathscr{L}_{EM}}{\partial(\partial_\mu A_{\nu})}$ is
\begin{align} \label{eq:ab_partial}
\frac{\partial \mathscr{L}_{EM}}{\partial(\partial_\mu A_\nu)}
&= -\frac{1}{4\pi c} g^{\mu\alpha}g^{\nu\beta} \sqrt{-g} F_{\alpha\beta}
\end{align}
\noindent The $(*1)$ term
\begin{align} \label{eq:anti_ab}
\underbracket[0.4pt][0pt]{\left[ \frac{\partial \mathscr{L}_{EM}}{\partial (\partial_\mu A_\nu)} A_\gamma \delta x^\gamma\right]_{,\nu \mu}}_{(*1)} = \left[ -\frac{1}{4\pi c} g^{\mu\alpha}g^{\nu\beta} \sqrt{-g} F_{\alpha\beta} A_\gamma \delta x^\gamma \right]_{,\nu \mu} = 0
\end{align}
due to the antisymmetric of $F_{\mu\nu}$ and the symmetric of second order derivative $ \{_{,\nu\mu}\}$.\\
\noindent The $(*2)$ term:
\begin{align} \label{eq:*2_ab}
\underbracket[0.4pt][0pt]{ \left( \frac{\partial \mathscr{L}_{EM}}{ \partial (\partial_\mu A_\nu)}\right)_{,\nu} A_\gamma \delta x^\gamma}_{(*2)}=0
\end{align}
\noindent Hence $(*)$ only left $(*3)$ term:
\[
\underbracket[0.4pt][0pt]{\partial_\mu\left[\frac{\partial \mathscr{L}_{EM}}{\partial(\partial_\mu A_\nu)} A_\gamma \delta x^\gamma \right]_{,\nu}}_{(*)} =-\partial_\mu\left[ \underbracket[0.4pt][0pt]{\frac{\partial \mathscr{L}_{EM}}{\partial(\partial_\mu A_\nu)} A_{\gamma, \nu} \delta x^\gamma }_{(3)} \right]
\]
The final result,
\begin{align*}
\Delta S &= \int \{EoM\}\delta A_\nu d^4 x + \int\partial_\mu \left[ \frac{\partial \mathscr{L}_{EM}}{\partial(\partial_\mu A_\nu)}\Delta A_\nu - \left( \frac{\partial \mathscr{L}_{EM}}{\partial(\partial_\mu A_\nu)} A_{\nu,\gamma} \delta x^\gamma - \underbracket[0.4pt][0pt]{ \frac{\partial \mathscr{L}_{EM}}{\partial(\partial_\mu A_\nu)} A_{\gamma, \nu} \delta x^\gamma }_{(*)=(3)} \right) - \delta^\mu_\gamma \mathscr{L}_{EM}\delta x^\gamma \right]d^4x \\
&= \int \{EoM\}\delta A_\nu d^4 x + \int \partial_\mu \left[ \frac{\partial \mathscr{L}_{EM}}{\partial(\partial_\mu A_\nu)}\Delta A_\nu - \left( \frac{\partial \mathscr{L}_{EM}}{\partial(\partial_\mu A_\nu)} F_{\gamma\nu} - \delta^\mu_\gamma \mathscr{L}_{EM} \right) \delta x^\gamma \right]d^4x
\end{align*}
\noindent Hence we have
\begin{align*}
\left(t_{EM}\right)^\mu_\gamma &= \frac{\partial \mathscr{L}_{EM}}{\partial(\partial_\mu A_\nu)} F_{\gamma\nu} - \delta^\mu_\gamma \mathscr{L}_{EM} \\
&=-\frac{1}{4\pi c} g^{\mu\alpha}g^{\nu\beta} F_{\alpha\beta} F_{\gamma\nu}\sqrt{-g}
+ \delta^\mu_\gamma \frac{1}{16\pi c} g^{\varepsilon\alpha}g^{\nu\beta}F_{\alpha\beta}F_{\varepsilon\nu}\sqrt{-g}\\
&= -\frac{1}{4\pi c}F^{\mu\nu}F_{\gamma\nu}\sqrt{-g} + \delta^\mu_\gamma \frac{1}{16\pi c} F^{\alpha\beta}F_{\alpha\beta}\sqrt{-g}\\
&=\underbracket[0.4pt][0pt]{\left( -\frac{1}{4\pi c}F^{\mu\nu}F_{\gamma\nu} + \delta^\mu_\gamma \frac{1}{16\pi c} F^{\alpha\beta}F_{\alpha\beta}\right)}_{\left({T_{EM}}\right)^\mu_\gamma}\sqrt{-g} \\
&=-\frac{1}{4\pi c}\delta^\mu_\varepsilon g^{\varepsilon\alpha} g^{\nu\beta} F_{\alpha\beta} F_{\gamma\nu}\sqrt{-g}
+ \delta^\mu_\gamma \frac{1}{16\pi c} g^{\varepsilon\alpha}g^{\nu\beta}F_{\alpha\beta}F_{\varepsilon\nu}\sqrt{-g}\\
&=\frac{1}{4\pi c}\left(-\delta^\mu_\varepsilon F_{\alpha\beta} F_{\gamma\nu}
+ \delta^\mu_\gamma \frac{1}{4} F_{\alpha\beta}F_{\varepsilon\nu}\right)g^{\varepsilon\alpha} g^{\nu\beta} \sqrt{-g}
\end{align*}
. This symmetric and gauge invariant.
\section{Non-Abelian Gauge Theory (Yang-Mills Theory)}
\subsection{Introduction}
In Sec.\ref{sec:Ab} we derive the symmetrical, gauge invariant canonical energy-momentum tensor for abelian gauge field. In this section we generalize to non-abelian gauge field. A more detailed derivation can be found in the non-Abelian parts in supplementary derivation.
\subsection{Derivation}
We denote $p$ is a point in spacetime, $\mathbf{B}(p)$ as Lie algebra valued gauge potential 1-form of the Yang-Mills field, and the field strength is $\mathbf{F} \equiv d\mathbf{B} + [\mathbf{B} \wedge \mathbf{B}]$. We will discuss the effect of the variation on gauge potential and the spacetime variation. We denote the variation on gauge potential, $\mathbf{B} \rightarrow \mathbf{\tilde{B}}= \mathbf{B} + \delta \mathbf{B}$, and the spacetime variation drag by a vector field $\delta x$ denote as:
\[
p \rightarrow \tilde{p} = f_{\delta x}(p)
\]
The total variation of gauge 1-form is
\[
\Delta \mathbf{B} = \mathbf{\tilde{B}}(\tilde{p}) - \textbf{B}(p) = \delta \mathbf{B} + \hat{\mathcal{L}}_{\delta x} \mathbf{B}
\]
In local coordinate $p \rightarrow \{x^\mu\}$, the expressions are
\[
\mathbf{B}(p) \rightarrow B^a_\mu(x^\gamma) \hat{T}_a
\]
where $\hat{T}_a$ is the generator of Lie algebra. The field strength in local coordinate
\begin{align} \label{eq:Guv}
\mathbf{F} \rightarrow \mathbf{F}_{\mu\nu}
&= \hat{T}_a \partial_\mu B_\nu^a - \hat{T}_a \partial_\nu B_\mu^a + \lambda [B_\mu^a \hat{T}_a, B_\nu^b \hat{T}_b] \nonumber \\
&= \hat{T}_a \left( \partial_\mu B_\nu^a - \partial_\nu B_\mu^a+ \lambda f_{bc}^a B_\mu^b B_\nu^c \right)
\end{align}
where
\[
[\hat{T}_a, \hat{T}_b] = f_{ab}^c \hat{T}_c
\]
and
\[ F_{\mu\nu}^a = \partial_\mu B_\nu^a - \partial_\nu B_\mu^a + \lambda f^a_{bc}B^b_\mu B^c_\nu \]
. $f^c_{ab}$ is the structure constant of Lie algebra. The local coordinate representation of variations are
\[p \rightarrow x^\nu = x^\nu + \delta x^\nu\]
\[\Delta B^a_\mu = \delta B^a_\mu + \partial_\nu B^a_\mu \delta x^\nu + B^a_\nu \partial_\mu \delta x^\nu\]
\noindent The Lagrangian $\mathscr{L}_{YM}$ of Yang-Mills field is
\begin{align} \label{eq:Lagrangian}
\mathscr{L}_{YM} = Tr\left( -\frac{1}{16\pi c} g^{\mu\alpha} g^{\nu\beta} \mathbf{F}_{\mu\nu} \mathbf{F} _{\alpha\beta} \sqrt{-g} \right) = -\frac{1}{16\pi c} K_{ab} g^{\mu\alpha} g^{\nu\beta} F^a_{\mu\nu} F^b_{\alpha\beta} \sqrt{-g}
\end{align}
Here, we denote the Killing form/metric as
\[
K_{ab} = Tr(f_{ad}^c f_{be}^d) = f^c_{ad} f^d_{bc}
\]
\noindent The action $S$
\[
S = \int d^4x \, \mathscr{L}_{YM}[B^a_\nu(x^\gamma), B^a_{\nu,\mu}(x^\gamma), x^\gamma]
\]
\noindent We derive the equation of motion (EoM) and the Noether theorem follow the standard procedure [1]. The variation of action $\Delta S$ divides into two terms:
\[
\Delta S = \int \Delta d^4 x * \mathscr{L}_{YM} + \int d^4 x * \Delta \mathscr{L}_{YM}
\]
\noindent The first term is the variation of the volume form, which is \autocite{ryder1996quantum}
\[
\Delta d^4 x = \partial_\gamma \delta x^\gamma \cdot d^4x
\]
\noindent The second term is the variation of $\mathscr{L}_{YM}$
\begin{align} \label{eq:Delta_L}
\Delta \mathscr{L}_{YM} &= \mathscr{L}_{YM}[\tilde{B}^a_\nu(\tilde{x}^\gamma), \tilde{B}^a_{\nu,\mu}(\tilde{x}^\gamma), \tilde{x}^\gamma] - \mathscr{L}_{YM}[B^a_\nu(x^\gamma), B^a_{\nu,\mu}(x^\gamma), x^\gamma] \nonumber \\
& = \left[ \frac{\partial \mathscr{L}_{YM}}{\partial B^a_\nu} \delta B^a_\nu + \frac{\partial \mathscr{L}_{YM}}{\partial (\partial_\mu B^a_\nu)} \delta (\partial_\mu B^a_\nu) \right] (x^\gamma) + \left[ {\mathscr{L}_{YM}}_{, \gamma} \delta x^\gamma \right] (x^\gamma) + O(\delta^2)
\end{align}
\noindent Hence the $\Delta S$ is
\begin{align} \label{eq:Delta_S}
\Delta S = \int \left[ \frac{\partial \mathscr{L}_{YM}}{\partial B^a_\nu} - \partial_\mu\left(\frac{\partial\mathscr{L}_{YM}}{\partial(\partial_\mu B^a_\nu)}\right) \right] \delta B^a_\nu d^4 x + \int \left[ \partial_\mu\left(\frac{\partial \mathscr{L}_{YM}}{\partial (\partial_\mu B^a_\nu)}\delta B^a_\nu\right) + (\mathscr{L}_{YM} \delta x^\gamma)_{,\gamma}\right] d^4 x
\end{align}
\noindent The EoM is
\[
\frac{\partial \mathscr{L}_{YM}}{\partial B^a_\nu} - \partial_\mu \left( \frac{\partial \mathscr{L}_{YM}}{\partial(\partial_\mu B^a_\nu)}\right) = 0
\]
\noindent Using $\delta B_\nu^a = \Delta B_\nu^a - B_{\nu,\gamma}^a \delta x^\gamma - B_\gamma^a \delta x_{,\nu}^\gamma$:
\begin{align*}
\Delta S &= \int \{EoM\} \delta B^a_\nu d^4 x + \int \partial_\mu\left[\frac{\partial \mathscr{L}_{YM}}{\partial(\partial_\mu B^a_\nu)} (\Delta B^a_\nu - B^a_{\nu,\gamma}\delta x^\gamma - B^a_\gamma \delta x_{,\nu}^\gamma) + \delta^\mu_\gamma\mathscr{L}_{YM} \delta x^\gamma\right]d^4x\\
&= \int \{EoM\} \delta B^a_\nu d^4 x + \int \underbracket[0.4pt][0pt]{\partial_\mu}_{(*)} \left[ \frac{\partial \mathscr{L}_{YM}}{\partial(\partial_\mu B^a_\nu)}\Delta B^a_\nu - \left( \frac{\partial \mathscr{L}_{YM}}{\partial(\partial_\mu B^a_\nu)}B^a_{\nu,\gamma} \delta x^\gamma + \underbracket[0.4pt][0pt]{\frac{\partial \mathscr{L}_{YM}}{\partial(\partial_\mu B^a_\nu)}B^a_\gamma \delta x^\gamma_{,\nu}}_{(*)} - \delta^\mu_\gamma \mathscr{L}_{YM}\delta x^\gamma\right)\right]d^4x
\end{align*}
\noindent Evaluate the $(*)$ term:
\begin{adjustwidth}{-2.5cm}{-1cm}
\begin{align} \label{eq:(*)}
\underbracket[0.4pt][0pt]{\partial_\mu \left[ \frac{\partial \mathscr{L}_{YM}}{\partial(\partial_\mu B^a_\nu)} B^a_{\gamma} \delta x^\gamma_{,\nu} \right]}_{(*)}
&= \underbracket[0.4pt][0pt]{\left[ \frac{\partial \mathscr{L}_{YM}}{\partial (\partial_\mu B^a_\nu)} B^a_\gamma \delta x^\gamma \right]_{,\nu \mu}}_{(*1)} -\partial_\mu \left[\underbracket[0.4pt][0pt]{ \left( \frac{\partial \mathscr{L}_{YM}}{ \partial (\partial_\mu B^a_\nu)}\right)_{,\nu} B^a_\gamma \delta x^\gamma }_{(*2)} \right] - \partial_\mu \left[\underbracket[0.4pt][0pt]{\frac{\partial \mathscr{L}_{YM}}{\partial(\partial_\mu B^a_\nu)}B^a_{\gamma,\nu} \delta x^\gamma }_{(*3)} \right]
\\
&=\underbracket[0.4pt][0pt]{
0}_{(*1)}
\textcolor{red}{+}\partial_\mu
\left[
\underbracket[0.4pt][0pt]{
\left(
\frac{\partial \mathscr{L}_{YM}}{ \partial \left(
\partial_{\textcolor{red}{\nu}} B^a_{\textcolor{red}{\mu}}\right) }
\right)_{,\nu}
B^a_\gamma \delta x^\gamma
}_{(*2)}
\right]
\textcolor{blue}{
-\partial_\mu\left[\left(
\frac{\partial \mathscr{L}_{YM}}{ \partial
B^a_\mu} \right)
B^a_\gamma \delta x^\gamma \right]}
\textcolor{blue}{
+\partial_\mu\left[\left(
\frac{\partial \mathscr{L}_{YM}}{ \partial
B^a_\mu} \right)
B^a_\gamma \delta x^\gamma \right]}
-\partial_\mu \left[\underbracket[0.4pt][0pt]{\frac{\partial \mathscr{L}_{YM}}{\partial(\partial_\mu B^a_\nu)}B^a_{\gamma,\nu} \delta x^\gamma }_{(*3)} \right]
\\
&=\underbracket[0.4pt][0pt]{
0}_{(*1)}
+\partial_\mu
\left[
\underbracket[0.4pt][0pt]{
\left[
\left(
\frac{\partial \mathscr{L}_{YM}}{ \partial \left(
\partial_{\nu} B^a_{\mu}\right) }
\right)_{,\nu}
-\frac{\partial \mathscr{L}_{YM}}{ \partial
B^a_\mu}
\right]
B^a_\gamma \delta x^\gamma
}_{(*2)}
\right]
+\partial_\mu \left[\frac{\partial\mathscr{L}_{YM}}{\partial(\partial_{\mu}B_{\nu}^{a})} \lambda f_{bn}^{a} B^{b}_\gamma B_{\nu}^{n}\delta x^\gamma \right]
-\partial_\mu \left[\underbracket[0.4pt][0pt]{\frac{\partial \mathscr{L}_{YM}}{\partial(\partial_\mu B^a_\nu)}B^a_{\gamma,\nu} \delta x^\gamma }_{(*3)} \right]
\end{align}
\end{adjustwidth}
\noindent We first calculate $\frac{\partial \mathscr{L}_{YM}}{\partial (\partial_\mu B_\nu^a)}$ for later use:
\begin{align} \label{eq:Non-ab_partial}
\frac{\partial \mathscr{L}_{YM}}{\partial (\partial_\mu B_\nu^a)} = -\frac{1}{4\pi c} K_{ab} g^{\alpha\mu} g^{\beta\nu} F_{\alpha\beta}^b \sqrt{-g}
\end{align}
\noindent The $(*1)$ term term:
\begin{align} \label{eq:(*1)}
\left( \frac{\partial \mathscr{L}_{YM}}{\partial (\partial_\mu B_\nu^a)} B_\gamma^a \delta x^\gamma \right)_{,\nu\mu}
=\left( -\frac{1}{4\pi c} K_{ab} g^{\alpha\mu} g^{\beta\nu} F_{\alpha\beta}^b \sqrt{-g} B_\gamma^a \delta x^\gamma \right)_{,\nu\mu} = 0
\end{align}
due to the antisymmetric of $F_{\mu\nu}$ and the symmetric of second order derivative $ \{_{,\nu\mu}\}$, similar with Eq.\eqref{eq:anti_ab} in Abelian case.\\
\noindent The $(*2)$ term is:
\begin{align} \label{eq:(*2)}
\underbracket[0.4pt][0pt]{ \left( \frac{\partial \mathscr{L}_{YM}}{ \partial (\partial_\mu B^a_\nu)}\right)_{,\nu} B^a_\gamma \delta x^\gamma}_{(*2)} = \frac{\partial\mathscr{L}_{YM}}{\partial(\partial_{\mu}B_{\nu}^{{a}})}\left( \lambda f_{{b}n}^{{a}}B_{\nu}^{n} B^{{b}}_\gamma \delta x^\gamma \right)
\end{align}
\noindent We now have:
\noindent Hence $(*)$ becomes:
\[
\underbracket[0.4pt][0pt]{\partial_\mu \left[ \frac{\partial \mathscr{L}_{YM}}{\partial(\partial_\mu B^a_\nu)} B^a_{\gamma} \delta x^\gamma_{,\nu} \right]}_{(*)}
=-\partial_\mu \left[\underbracket[0.4pt][0pt]{-\frac{\partial\mathscr{L}_{YM}}{\partial(\partial_{\mu}B_{\nu}^{a})} \lambda f_{bn}^{a} B^{b}_\gamma B_{\nu}^{n}\delta x^\gamma }_{(*2)} \right]-\partial_\mu \left[\underbracket[0.4pt][0pt]{\frac{\partial \mathscr{L}_{YM}}{\partial(\partial_\mu B^a_\nu)}B^a_{\gamma,\nu} \delta x^\gamma }_{(*3)}\right]
\]
\begin{align*}
\Delta S &= \int \{EoM\} \delta B_\nu^a \, d^4x + \int \partial_\mu \left[ \frac{\partial \mathscr{L}_{YM}}{\partial(\partial_\mu B_\nu^a)} \Delta B_\nu^a - \frac{\partial \mathscr{L}_{YM}}{\partial(\partial_\mu B_\nu^a)} \left( B^a_{\nu, \gamma} - \underbracket[0.4pt][0pt]{B^a_{\gamma,\nu} }_{(*3)} +\underbracket[0.4pt][0pt]{ \lambda f_{bn}^{a} B^{b}_\gamma B_{\nu}^{n} }_{(*2)}\right) \delta x^\gamma + \delta^\mu_\gamma \mathscr{L}_{YM} \delta x^\gamma \right] \, d^4x \\
&=\int \{EoM\} \delta B_\nu^a \, d^4x + \int \partial_\mu \left[ \frac{\partial \mathscr{L}_{YM}}{\partial(\partial_\mu B_\nu^a)} \Delta B_\nu^a - \left( \frac{\partial \mathscr{L}_{YM}}{\partial(\partial_\mu B_\nu^a)} F^a_{\gamma\nu} - \delta^\mu_\gamma \mathscr{L}_{YM}\right) \delta x^\gamma \right] \, d^4x
\end{align*}
\noindent Hence we have
\begin{align*}
\left(t_{YM}\right)^\mu_\gamma &= \frac{\partial \mathscr{L}_{YM}}{\partial(\partial_\mu B_\nu^a)} F^a_{\gamma\nu} - \delta^\mu_\gamma \mathscr{L}_{YM}\\
&= \left( -\frac{1}{4\pi c} K_{ab} g^{\alpha\mu} g^{\beta\nu} F_{\alpha\beta}^b \sqrt{-g} \right)F^a_{\gamma\nu} - \delta^\mu_\gamma \left( -\frac{1}{16\pi c} K_{ab} g^{\mu\alpha} g^{\nu\beta} F^a_{\mu\nu} F^b_{\alpha\beta} \sqrt{-g} \right)\\
&= -\frac{1}{4\pi c} F^{\mu\nu}_a F^a_{\gamma\nu} \sqrt{-g} + \delta^\mu_\gamma \frac{1}{16\pi c} F^{\alpha\beta}_a F^a_{\alpha\beta} \sqrt{-g}
\end{align*}
\begin{align*}
g_{\psi\mu}g^{\phi\gamma}\left(t_{YM}\right)^\mu_\gamma
&= g_{\psi\mu}g^{\phi\gamma}\left( -\frac{1}{4\pi c} F^{\mu\nu}_a F^a_{\gamma\nu} \sqrt{-g} + \delta^\mu_\gamma \frac{1}{16\pi c} F^{\alpha\beta}_a F^a_{\alpha\beta} \sqrt{-g}
\right)\\
&= -\frac{1}{4\pi c} g_{\psi\mu}g^{\phi\gamma} F^{\mu\nu}_a F^a_{\gamma\nu} \sqrt{-g}
+g_{\psi\mu}g^{\psi\gamma} \delta^\mu_\gamma \frac{1}{16\pi c} F^{\alpha\beta}_a F^a_{\alpha\beta} \sqrt{-g} \\
&= -\frac{1}{4\pi c} g_{\psi\mu}g^{\phi\gamma}
g^{\mu\zeta}g^{\nu\xi}F^a_{\zeta\xi} F^a_{\gamma\nu} \sqrt{-g}
+\delta^\phi_\psi \frac{1}{16\pi c} F^{\alpha\beta}_a F^a_{\alpha\beta} \sqrt{-g} \\
&= -\frac{1}{4\pi c} g^{\phi\gamma}
g^{\nu\xi}F^a_{\psi\xi} F^a_{\gamma\nu} \sqrt{-g}
+\delta^\phi_\psi \frac{1}{16\pi c} F^{\alpha\beta}_a F^a_{\alpha\beta} \sqrt{-g} \\
&= -\frac{1}{4\pi c} g_{\psi\mu}g^{\phi\gamma}
g^{\mu\zeta}g^{\nu\xi}F^a_{\zeta\xi} F^a_{\gamma\nu} \sqrt{-g}
+\delta^\phi_\psi \frac{1}{16\pi c} F^{\alpha\beta}_a F^a_{\alpha\beta} \sqrt{-g} \\
&= -\frac{1}{4\pi c} F^a_{\psi\xi} F_a^{\phi\xi} \sqrt{-g}
+\delta^\phi_\psi \frac{1}{16\pi c} F^{\alpha\beta}_a F^a_{\alpha\beta} \sqrt{-g} \\
&=\left(t_{YM}\right)^\phi_\psi
\end{align*}
\section{1-form nature of gauge potential}
\noindent For \textbf{non-abelian} gauge theories, the definition of the curvature must account for the non-commuting nature of the gauge group generators. The field strength is given by:
\[
F = dA + A \wedge A
\]
In terms of components \(A = A^a_\mu T^a dx^\mu\) and \(F = \frac{1}{2} F^a_{\mu\nu} T^a dx^\mu \wedge dx^\nu\), the \(A \wedge A\) term generates the commutator term involving the Lie algebra structure constants \(f^{abc}\):
\[
F^a_{\mu\nu} = \partial_\mu A^a_\nu - \partial_\nu A^a_\mu + g f^a_{bc} A^b_\mu A^c_\nu
\]
where \(g\) is the coupling constant. This non-linear term reflects the self-interaction of the non-abelian gauge bosons (e.g., gluons interacting with gluons).
In both cases, the 2-form \(F\) (or its components \(F_{\mu\nu}\) or \(F^a_{\mu\nu}\)) represents the physically measurable field strength or curvature associated with the gauge connection \(A\).
\subsection{1-form Nature of Gauge Potential}
\noindent Mathematically, the gauge connection is a 1-form field. However, in physics, normally treat gauge potential as a vector field \(A^\mu \) or as a 1-form field \(A_\mu \) equivalently. These two point of view are related by metric tensor field \(g\):
\begin{align*}
A^\mu&=g^{\mu\nu}A_\nu\\
A_\mu&=g_{\mu\nu}A^\nu\\
\delta^\mu_\nu&=g^{\mu\gamma}g_{\gamma\nu}
\end{align*}
\noindent Furthermore, the concept of differentiation in differential geometry is intimately linked with forms. The \textbf{exterior derivative}, denoted by \(d\), is a fundamental operator acting on differential forms, increasing their degree by one (e.g., acting on a 0-form function \(f\) gives the 1-form differential \(df = \frac{\partial f}{\partial x^\mu} dx^\mu\)). A key property is that applying it twice yields zero: \(d^2 = 0\).
\noindent The physical \textbf{field strength} (or \textbf{curvature} in geometric terms), denoted by the 2-form \(F\), is defined via the exterior derivative of the connection 1-form \(A\). For an \textbf{abelian} gauge theory (like electromagnetism), the relationship is simply:
\[
F = dA
\]
To see how this relates to the familiar component form, we write \(A = A_\mu dx^\mu\) (summation implied) and apply the exterior derivative using its properties (linearity, product rule \(d(\alpha \wedge \beta) = d\alpha \wedge \beta + (-1)^p \alpha \wedge d\beta\) where \(p\) is the degree of \(\alpha\), and \(d^2=0\)):
\begin{align*}
F = d(A_\mu dx^\mu) &= (dA_\mu) \wedge dx^\mu + A_\mu \wedge (d(dx^\mu)) \\
&= \left(\frac{\partial A_\mu}{\partial x^\nu} dx^\nu\right) \wedge dx^\mu + A_\mu \wedge (0) \quad (\text{since } d(dx^\mu) = d^2x^\mu = 0) \\
&= \frac{\partial A_\mu}{\partial x^\nu} dx^\nu \wedge dx^\mu
\end{align*}
The standard way to write a 2-form \(F\) in terms of its components \(F_{\mu\nu}\) is \(F = \frac{1}{2} F_{\mu\nu} dx^\mu \wedge dx^\nu\). Comparing the two expressions and using the anti-symmetric property of the wedge product (\(dx^\nu \wedge dx^\mu = - dx^\mu \wedge dx^\nu\)):
\[
\frac{\partial A_\mu}{\partial x^\nu} dx^\nu \wedge dx^\mu = \frac{1}{2} \left( \frac{\partial A_\nu}{\partial x^\mu} - \frac{\partial A_\mu}{\partial x^\nu} \right) dx^\mu \wedge dx^\nu
\]
Comparing the coefficients of \(dx^\mu \wedge dx^\nu\) (e.g., by setting specific indices), we identify the components:
\[
F_{\mu\nu} = \partial_\mu A_\nu - \partial_\nu A_\mu
\]
This recovers the familiar definition of the electromagnetic field strength tensor.
\noindent In physics, the field strength can also be written in 2-vector:
\begin{align*}
F^{\mu\nu} &=\partial^\mu A^\nu-\partial^\nu A^\mu\\
&=g^{\mu\alpha}g^{\nu\beta}F_{\alpha\beta}
\end{align*}
\noindent The Lagrangian has two ways to express:
\begin{align*}
\mathscr{L}^{A_\mu}&= -\frac{1}{16\pi c} g^{\mu\alpha}g^{\nu\beta}F_{\alpha\beta}F_{\mu\nu}\\
\mathscr{L}^{A^\mu}&= -\frac{1}{16\pi c} g_{\mu\alpha}g_{\nu\beta}F^{\alpha\beta}F^{\mu\nu}\\
\end{align*}
\noindent These two Lagrangian are equivalent when derived the EoM, either using \(A_\mu\to A_\mu+\delta A_\mu \) or \(A^\mu\to A^\mu+\delta A^\mu \). However, when apply Noether's theorem, only 1-form potential can derive correct canonical energy momentum tensor. The difference comes from the Lie derivative in total variation:
\begin{align*}
\Delta A_\nu &= \delta A_\nu + A_{\nu,\gamma} \delta x^\gamma + A_\gamma {\delta x^\gamma}_{,\nu}\\
\Delta A^\nu &= \delta A^\nu + {A^{\nu}}_{,\gamma} \delta x^\gamma\underbracket[0.4pt][0pt]{- A^\gamma {\delta x^\nu}_{,\gamma}}_
\end{align*}
Previously we demonstrates the 1-form potential $A_\mu$ can derive desired canonical energy momentum tensor.
\subsection{The 1-form Nature of the Gauge Potential}
\noindent From a rigorous mathematical perspective, particularly within the framework of differential geometry used to describe gauge theories, the fundamental object representing the gauge field is a \textbf{connection 1-form}, often denoted simply as \(A\). This connection lives on a principal bundle (or an associated vector bundle) over spacetime and provides a way to relate, or "connect," the internal gauge degrees of freedom at infinitesimally separated spacetime points. It defines the concept of parallel transport for fields charged under the gauge group. For non-abelian gauge theories (like Yang-Mills theory), this 1-form \(A\) takes values in the Lie algebra associated with the gauge group. Its components in a local coordinate basis \(dx^\mu\) can be written as \(A = A^a_\mu T^a dx^\mu\), where \(T^a\) are the generators of the Lie algebra.
\section{General Relativity}
\subsection{Introduction}
The stress-energy-momentum pseudotensor is traditional method to describe the concept of energy-momentum of gravitational field. The Landau-Lifshitz pseudotensor $t^{\mu\nu}_{LL}$ is derived from the Einstein field equation $\mathbb{G}^{\mu\nu} =\kappa T^{\mu\nu}$ to satisfied the conservation law $(T^{\mu\nu} + t^{\mu\nu}_{LL})_{,\nu} = 0$, where $\mathbb{G}^{\mu\nu}$ is Einstein field tensor, $\kappa=\frac{8\pi G}{c^4}$, and $T^{\mu\nu}$ is the energy-momentum tensor of source.
\begin{align*}
t^{\mu\nu}_{LL} = -\frac{1}{2\kappa}\mathbb{G}^{\mu\nu} + \frac{1}{2\kappa(-g)}[(-g)(g^{\mu\nu}g^{\alpha\beta}-g^{\mu\alpha}g^{\nu\beta} )]_{,\alpha\beta}
\end{align*}
\noindent $t^{\mu\nu}_{LL}$ is symmetrical but depend explicit in the Christoffel symbols (i.e., coordinate dependent and vanish in specific coordinate). The Dirac pseudotensor $t^{\mu\nu}_D$ starting from the equivalent action $\mathscr{L}_{GR}^*$ and derived using standard Noether's theorem derivation. The original Einstein-Hilbert action $\mathscr{L}_{GR} = R\sqrt{-g}=\mathscr{L}_{GR} [g^{\mu\nu},{g^{\mu\nu}}_{,\gamma}, {g^{\mu\nu}}_{,\gamma\eta}]$ depend on the second derivative of metric tensor, where $R$ and $g$ are Ricci scalar and $g = \det(g_{\mu\nu})$, respectively. The Ostrogradsky instability indicate the Lagrangian should not depend on higher order derivative more than 1st order. The equivalent action
\begin{align*}
\mathscr{L}_{GR}^* &= \mathscr{L}_{GR} - \partial_\mu(\sqrt{-g}g^{\mu\nu}\Gamma^\sigma_{\nu\sigma} - \sqrt{-g}g^{\sigma\nu}\Gamma^\mu_{\nu\sigma})\\
&= \sqrt{-g}g^{\mu\nu}\left(\Gamma^\tau_{\mu\nu}\Gamma^\sigma_{\tau\sigma} - \Gamma^\tau_{\mu\sigma}\Gamma^\sigma_{\tau\nu}\right)\\
&=\mathscr{L}_{GR}^* [g^{\mu\nu},{g^{\mu\nu}}_{,\gamma}]
\end{align*}
have same EoM with advantage only depend on the 1st order derivative of metric tensor, which can apply standard Noether's theorem derivation. However, the equivalent action $\mathscr{L}_{GR}^*$ lost the scalar property. Also, the Dirac pseudotensor $t^{\mu\nu}_D$:
\begin{align*}
t^{\mu\nu}_D = \frac{1}{2\kappa(-g)}\left[g^{\mu\gamma}\left(g^{\alpha\beta}\sqrt{-g} \right)_{,\gamma}\left(
\Gamma^\nu_{\alpha\beta} -\delta^\nu_\beta \Gamma^\sigma_{\alpha\sigma} \right) - g^{\mu\nu}g^{\alpha\beta} \left( \Gamma^\rho_{\alpha\beta}\Gamma^\sigma_{\rho\sigma}-\Gamma^\rho_{\alpha\sigma}\Gamma^\sigma_{\beta\rho}\right) \right]
\end{align*}
\noindent lost the symmetric property, and is coordinate dependent and vanishes in specific coordinate as $t^{\mu\nu}_{LL}$.\\
\noindent As we previously derive the symmetrical, gauge invariant canonical energy-momentum tensor for abelian and non-abelian gauge field, in this article we generalize to general relativity. To reserve the scalar property of the Lagrangian and avoid the higher-order derivatives, we will use Palatini variation for derivation the EoM. To further apply Noether's theorem, we will use the vielbeins technique for deriving the conservation law. A more detailed derivation can be found in the supplementary derivation.
\subsection{Derivation of Palatini variation}
\noindent The Palatini variation treat metric tensor $g^{\omega\sigma}$ and the connection $\Gamma^\varepsilon_{\kappa\gamma}$ as independent field. The curvature tensor $R^\varepsilon_{\kappa\omega\sigma}$:
\begin{align} \label{eq:R_curvature}
R^\varepsilon_{\kappa\omega\sigma} = \Gamma^\varepsilon_{\kappa\sigma,\omega} - \Gamma^\varepsilon_{\kappa\omega,\sigma} + \Gamma^\varepsilon_{\gamma\omega}\Gamma^\gamma_{\kappa\sigma} - \Gamma^\varepsilon_{\gamma\sigma}\Gamma^\gamma_{\kappa\omega}
\end{align}
and the torsion tensor $T^\alpha_{\beta\gamma}$:
\begin{align} \label{eq:torsion}
T^\alpha_{\beta\gamma} = \Gamma^\alpha_{\beta\gamma} - \Gamma^\alpha_{\gamma\beta}=- T^\alpha_{\gamma\beta}
\end{align}
\noindent In the following, we will NOT assume the connection to be torsion-free, i.e., $T^\alpha_{\beta\gamma} \neq 0 \leftrightarrow \Gamma^\alpha_{\beta\gamma} \neq \Gamma^\alpha_{\gamma\beta}$ in general. The Einstein-Hilbert action:
\begin{align*}
\mathscr{L}_{GR} = \frac{1}{2\kappa}\sqrt{-g}g^{\mu\nu}\delta^\omega_\varepsilon R_{\kappa\omega\sigma}^\varepsilon = \mathscr{L}_{GR}[g^{\mu\nu}, \Gamma^\kappa_{\mu\nu}, \Gamma^\kappa_{\mu\nu,\gamma}]
\end{align*}
\begin{align*}
S = \frac{1}{2\kappa}\int d^4x \sqrt{-g} g^{\kappa\sigma}\delta^\omega_\varepsilon R^\varepsilon_{\kappa\omega\sigma}
\end{align*}
\noindent Here we note that the Ricci tensor $R_{\kappa\sigma}$ and Ricci scalar $R$ are:
\begin{align*}
R_{\kappa\sigma} = \delta^\omega_\varepsilon R_{\kappa\omega\sigma}^\varepsilon
\end{align*}
and
\begin{align*}
R = g^{\kappa\sigma}R_{\kappa\sigma}
\end{align*}
\noindent , so $\mathscr{L}_{GR} = \frac{1}{2\kappa}\sqrt{-g}R$. Since the metric tensor $g^{\mu\nu}$ and the connection $\Gamma^\alpha_{\mu\nu}$ are independent field, the Lagrangian only depend on 1st order derivative of the connection. The Palatini variation:
\begin{align} \label{eq:Action_g}
\delta S &= \int \left(\frac{\partial \mathscr{L}_{GR}}{\partial g^{\mu\nu}}\delta g^{\mu\nu} + \frac{\partial \mathscr{L}_{GR}}{\partial \Gamma^\alpha_{\mu\nu}} \delta \Gamma^\alpha_{\mu\nu} + \frac{\partial \mathscr{L}_{GR}}{\partial \Gamma^\alpha_{\mu\nu,\gamma}} \delta \Gamma^\alpha_{\mu\nu,\gamma} \right) d^4x \nonumber \\
&= \int \underbracket[0.4pt][0pt]{\frac{\partial \mathscr{L}_{GR}}{\partial g^{\mu\nu}}}_{EoM\#1}\delta g^{\mu\nu} d^4x + \int \underbracket[0.4pt][0pt]{\left[ \frac{\partial \mathscr{L}_{GR}}{\partial \Gamma^\alpha_{\mu\nu}} - \left(\frac{\partial \mathscr{L}_{GR}}{\partial \Gamma^\alpha_{\mu\nu,\gamma}}\right)_{,\gamma}\right]}_{EoM\#2} \delta \Gamma^\alpha_{\mu\nu} d^4 x + \int \left[ \frac{\partial \mathscr{L}_{GR}}{\partial \Gamma^\alpha_{\mu\nu,\gamma}}\delta\Gamma^\alpha_{\mu\nu}\right]_{,\gamma} d^4x
\end{align}
\noindent Two equations of motion (EoM) are
\begin{align*}
\frac{\partial \mathscr{L}_{GR}}{\partial g^{\mu\nu}} &= 0 \\
\frac{\partial \mathscr{L}_{GR}}{\partial \Gamma^\alpha_{\mu\nu}} &= \left(\frac{\partial \mathscr{L}_{GR}}{\partial \Gamma^\alpha_{\mu\nu,\gamma}}\right)_{,\gamma}
\end{align*}
\subsection{EoM\#1 - Einstein Field Equation}
\noindent Since the curvature tensor do not depend on metric tensor, the first EoM:
\begin{align} \label{eq:Einstein}
\frac{\partial \mathscr{L}_{GR}}{\partial g^{\mu\nu}} = \frac{1}{2\kappa} \sqrt{-g}\left( R_{\mu\nu} - \frac{1}{2} g_{\mu\nu} R \right)=0
\end{align}
\noindent Define the Einstein field tensor $G_{\mu\nu}$:
\begin{align*}
\mathbb{G}_{\mu\nu} = R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R
\end{align*}
\noindent For vacuum, $\mathbb{G}_{\mu\nu}=0$ is the Einstein field equation in vacuum.
\noindent If the matter presents, for example, photon field, $\mathscr{L}_{GR}=\mathscr{L}_{GR}+\mathscr{L}_M$, where $\mathscr{L}_{GR}=\frac{1}{2\kappa}\sqrt{-g}R$ and $\mathscr{L}_M$ is matters. The variation gives:
\begin{align*}
\frac{\partial \left( \mathscr{L}_{GR}+\mathscr{L}_M \right) }{\partial g^{\mu\nu}} &=\frac{\partial \mathscr{L}_{GR} }{\partial g^{\mu\nu}}+\frac{\partial \mathscr{L}_M }{\partial g^{\mu\nu}}=
\frac{1}{2\kappa} \sqrt{-g}\, \mathbb{G}_{\mu\nu} +\frac{\partial \mathscr{L}_M }{\partial g^{\mu\nu}}=0\\
&\to \mathbb{G}_{\mu\nu}=\kappa \left( \frac{-2}{\sqrt{-g}} \frac{\partial \mathscr{L}_M }{\partial g^{\mu\nu}} \right)\equiv \kappa \left(T_M\right)_{\mu\nu}
\end{align*}
\noindent We take EM field as an example.
\begin{align*}
\left(T_{EM}\right)_{\mu\nu}= \frac{-2}{\sqrt{-g}} \frac{\partial \mathscr{L}_{EM} }{\partial g^{\mu\nu}}
= \frac{-2}{\sqrt{-g}} \frac{\partial }{\partial g^{\mu\nu}}\left(-\frac{1}{16\pi c} g^{\mu\alpha}g^{\nu\beta}F_{\alpha\beta}F_{\mu\nu}\sqrt{-g}\right)
\end{align*}
\subsection{EoM\#2 - Relate to The Metric Compatible Condition}
\noindent To show the second EoM relates to the metric compatible condition, we will use the following relations:
\begin{align} \label{eq:Fact_1}
\frac{1}{\sqrt{-g}}\left(\sqrt{-g}g^{\mu\nu}\right)_{;\gamma} = \frac{1}{\sqrt{-g}}\left(\sqrt{-g}g^{\mu\nu}\right)_{,\gamma}
-g^{\mu\nu}\Gamma_{\eta\gamma}^{\eta}
+g^{\eta\nu}\Gamma_{\eta\gamma}^{\mu}
+g^{\mu\eta}\Gamma_{\eta\gamma}^{\nu}
\end{align}
\noindent We first calculate $\frac{\partial \mathscr{L}_{GR}}{\partial \Gamma_{\mu\nu}^\alpha}$ and $\frac{\partial \mathscr{L}_{GR}}{\partial \Gamma_{\mu\nu,\gamma}^\alpha}$ for later use:
\begin{align} \label{eq:EoM2_R}
\frac{\partial \mathscr{L}_{GR}}{\partial \Gamma_{\mu\nu}^\alpha} =
\sqrt{-g} \left( g^{\kappa\sigma} \delta_\alpha^\nu \Gamma_{\kappa\sigma}^\mu + g^{\mu\nu} \Gamma_{\alpha\omega}^\omega - g^{\kappa\nu} \Gamma_{\kappa\alpha}^\mu - g^{\mu\sigma} \Gamma_{\alpha\sigma}^\nu\right)
\end{align}
\begin{align} \label{eq:EoM2_D}
\frac{\partial \mathscr{L}_{GR}}{\partial \Gamma_{\mu\nu,\gamma}^\alpha} =
\sqrt{-g} \left( g^{\mu\nu} \delta_\alpha^\gamma - g^{\mu\gamma} \delta_\alpha^\nu \right)
\end{align}
\begin{align} \label{eq:EoM2_DD}
\left(\frac{\partial \mathscr{L}_{GR}}{\partial \Gamma_{\mu\nu,\gamma}^\alpha}\right)_{,\gamma}
= (\sqrt{-g} \, g^{\mu\nu})_{,\alpha} - (\sqrt{-g} \, g^{\mu\gamma})_{,\gamma} \delta_\alpha^\nu
\end{align}
\noindent Substituting Eq.\eqref{eq:EoM2_R} and Eq.\eqref{eq:EoM2_DD} into EoM(more detail derivation, see supplement Eq.\eqref{eq:EoM2_cal} below):
\begin{align} \label{eq:EoM2_cal}
\underbracket[0.4pt][0pt]{{(\sqrt{-g} \, g^{\mu\nu})_{,\alpha}} -{(\sqrt{-g} \, g^{\mu\gamma})_{,\gamma} \delta_\alpha^\nu}}_{\left( \frac{\partial \mathscr{L}_{GR}}{\partial \Gamma_{\mu\nu,\gamma}^\alpha} \right)_{,\gamma} } &=\underbracket[0.4pt][0pt]{{\sqrt{-g} \, g^{\kappa\sigma} \delta_\alpha^\nu \Gamma_{\kappa\sigma}^\mu} + {\sqrt{-g}\, g^{\mu\nu} \Gamma_{\alpha\omega}^\omega} -{\sqrt{-g}\, g^{\kappa\nu} \Gamma_{\kappa\alpha}^\mu}-{\sqrt{-g}\, g^{\mu\sigma} \Gamma_{\alpha\sigma}^\nu}}_{\frac{\partial \mathscr{L}_{GR}}{\partial \Gamma_{\mu\nu}^\alpha}} \nonumber\\
{\frac{1}{\sqrt{-g}} \left(\sqrt{-g}\,g^{\mu\nu}\right)}_{;\alpha} &=\left[ {\frac{1}{\sqrt{-g}} \left(\sqrt{-g}\,g^{\mu\gamma}\right)}_{;\gamma}+g^{\mu\gamma}\, T^\eta_{\eta\gamma}\right] \delta_\alpha^\nu +
g^{\mu\nu} T_{\alpha\gamma}^{\gamma} +
g^{\mu\kappa}T^\nu_{\kappa\alpha}
\end{align}
\noindent After some calculation (more detail derivation, see supplement Eq.\eqref{eq:EoM2_result} below), we arrive
\begin{align} \label{eq:EoM2_result}
{g^{\mu\nu}}_{;\alpha} &= \frac{1}{3}\, g^{\mu\gamma}\, T^\eta_{\eta\gamma} \, \delta_\alpha^\nu
+\frac{1}{3}g^{\mu\nu}T^\eta_{\eta\alpha} +
g^{\mu\gamma}T^\nu_{\gamma\alpha}\\
\end{align}
\noindent Eq.\eqref{eq:EoM2_result} indicate that:
\begin{table}[h]
\centering
\begin{tabular}{|>{\Centering}p{0.45\textwidth}|>{\Centering}p{0.45\textwidth}|} % Use 'p' and \Centering
\hline
Torsion-free then metric compatible & Metric compatible then torsion-free \\
\hline
% First row of cells (using minipages for vertical centering)
\begin{minipage}[t]{0.45\textwidth}
\centering
If torsion-free:\, $T^\alpha_{\beta\gamma}=0$, then ${g^{\mu\nu}}_{;\alpha}=0$
\end{minipage}
&
\begin{minipage}[t]{0.45\textwidth}
\centering
If Metric compatible:\, ${g^{\mu\nu}}_{;\alpha}=0$, then
$T^\alpha_{\beta\gamma} = 0$
\end{minipage} \\
\hline
\end{tabular}
\caption{Comparison of Torsion-free and Metric Compatibility Conditions}
\label{tab:torsion_metric}
\end{table}
\noindent If torsion-free, then
\begin{align*}
{g^{\mu\nu}}_{;\alpha}={g^{\mu\nu}}_{,\alpha} + g^{\kappa\nu} \Gamma_{\kappa\alpha}^\mu + { g^{\mu\kappa}\Gamma^\nu_{\kappa\alpha}} =0
\end{align*}
is the metric compatible condition.
\subsection{Vielbeins Formalism}
\noindent In previous tutorials, the variation of the Lie-algebra value gauge 1-form (gauge connection) $\mathbf{B}$ on principal bundle is :
\begin{align} \label{eq:B_mu}
\Delta \mathbf{B}&=\delta \mathbf{B} + \hat{\mathcal{L}}_{\delta x} \mathbf{B}
\end{align}
In local coordinate $p \rightarrow \{x^\mu\}$, the expressions of $\mathbf{B}$ is
\begin{align*}
\mathbf{B}(p) \rightarrow B^a_\mu(x^\gamma) \hat{T}_a
\end{align*}
, where $\hat{T}_a$ is the generator of Lie algebra. For a given
Lie algebra representation:
\begin{align*}
\hat{T}_a \to \left(\hat{T}_a\right)^b_c
\end{align*}
\noindent We define the notation:
\begin{align*}
\hat{B}^b_{c\mu} \equiv B^a_\mu \left(\hat{T}_a\right)^b_c
\end{align*}
. The curvature tensor:
\begin{align} \label{eq:P_curvature}
\mathbf{F}\equiv d\mathbf{B} + [\mathbf{B} \wedge \mathbf{B}] \rightarrow \hat{G}^a_{b\mu\nu} &= \hat{B}_{b\nu,\mu}^a - \hat{B}_{b\mu,\nu}^a + \hat{B}_{c\mu}^a\hat{B}_{b\nu}^c-\hat{B}_{c\nu}^a\hat{B}_{b\mu}^c
\end{align}
\noindent Eq.\eqref{eq:B_mu} in local coordinate with Lie algebra representation is:
\begin{align} \label{eq:varaition_gauge}
\Delta \hat{B}^b_{c\mu} &= \delta \hat{B}^b_{c\mu} + \underbrace{\delta x^\nu \partial_\nu \hat{B}^b_{c\mu} + \hat{B}^b_{c\mu}\partial_\mu \delta x^\nu}_{\hat{\mathcal{L}}_{\delta x} \mathbf{B}}
\end{align}
\noindent However, the connection on tangent bunble is more subtle (see footnote 9. in \autocite{yang1996symmetry}). The curvature on tangent bundle is Eq.\eqref{eq:R_curvature}:
\begin{align} \tag{\ref{eq:R_curvature}}
R^\varepsilon_{\kappa\omega\sigma} = \Gamma^\varepsilon_{\kappa\sigma,\omega} - \Gamma^\varepsilon_{\kappa\omega,\sigma} + \Gamma^\varepsilon_{\gamma\omega}\Gamma^\gamma_{\kappa\sigma} - \Gamma^\varepsilon_{\gamma\sigma}\Gamma^\gamma_{\kappa\omega}
\end{align}
\noindent The principal curvature Eq.\eqref{eq:P_curvature} is Lie-algebra value 2-form. In contrast, the tangent bundle curvature takes value in tangent vector. If we directly apply Lie derivative on tangent connection:
\begin{align*}
\left(\hat{\mathcal{L}}_{\delta x} \Gamma\right)^\alpha_{\mu\nu} = {\delta x}^\varepsilon \Gamma^\alpha_{\mu\nu,\varepsilon} + \Gamma^\alpha_{\mu\varepsilon}{\delta x}^\varepsilon_{,\nu} + \underbracket[0.4pt][0pt]{{{\delta x}^\alpha_{,\mu\nu}} - \Gamma^\varepsilon_{\mu\nu}\delta x^\alpha_{,\varepsilon} + \Gamma^\alpha_{\varepsilon\nu}{\delta x}^\varepsilon_{,\mu}}_{\text{due to tangent vector value}}
\end{align*}
\noindent We can use Vielbeins formalism. In the vielbeins formalism, the tangent connection $\Gamma^\varepsilon_{\kappa\sigma}$ becomes the spin connection $\omega ^a_{b\sigma} $ in the frame bundle, which is $\frak{gl}$-value 1-form. From the tangent formalism $\{\partial_\mu \}$ to the vielbeins formalism $\{\hat{e}_a\}$, define the transformation $e^\mu_a$ such that(more detail can be found in Supplementary: Vielbeins):
\begin{align*}
\partial_\mu &=e_\mu^a \hat{e}_a\\
g_{\mu\nu}&= e_\mu^a e_\nu^b\eta_{ab}\\
e^\mu_a e^a_\nu=\delta^\mu_\nu\,\,\, &and \,\,\,e^\mu_a e^b_\mu=\delta^a_b
\end{align*}
\noindent The spin conncection:
\begin{align*}
\omega ^a_{b\sigma}=e_\varepsilon^a e_b^\kappa\Gamma^\varepsilon_{\kappa\sigma}+e^a_\mu e^\mu_{b,\sigma}
\end{align*}
\begin{align*}
e^\alpha_a e^b_\beta \omega ^a_{b\sigma}
&=e^\alpha_a e^b_\beta e_\varepsilon^a e_b^\kappa\Gamma^\varepsilon_{\kappa\sigma}
+e^\alpha_a e^b_\beta e^a_\mu e^\mu_{b,\sigma}\\
e^\alpha_a e^b_\beta \omega ^a_{b\sigma}
&=\delta^\alpha_\varepsilon \delta^\kappa_\beta\Gamma^\varepsilon_{\kappa\sigma}
+\delta^\alpha_\mu e^b_\beta e^\mu_{b,\sigma}\\
e^\alpha_a e^b_\beta \omega ^a_{b\sigma}
&=\Gamma^\alpha_{\beta\sigma}
+e^b_\beta e^\alpha_{b,\sigma}\\
\Gamma^\alpha_{\beta\sigma}
&=e^\alpha_a e^b_\beta \omega ^a_{b\sigma}
-e^b_\beta e^\alpha_{b,\sigma}\\
\end{align*}
\noindent The frame bundle curvature $\mathscr{R}^a_{b\omega\sigma}$ is
\begin{align*}
\mathscr{R}^a_{b\omega\sigma}&=\omega ^a_{b\sigma,\omega}-\omega ^a_{b\omega,\sigma}+\omega ^a_{c\omega}\omega ^c_{b\sigma}-\omega ^a_{c\sigma}\omega ^c_{b\omega}\\
&=e^a_\varepsilon e_b^\kappa R^\varepsilon_{\kappa\omega\sigma}
\end{align*}
\noindent With this preparation, the Hilbert-Einstein action becomes as follows:
\begin{align} \label{eq:action_G}
S = \frac{1}{2\kappa}\int d^4x \sqrt{-g} g^{\kappa\sigma}\delta^\omega_\varepsilon R^\varepsilon_{\kappa\omega\sigma}= \frac{1}{2\kappa}\int d^4x\,e\, \eta^{ae}e^\sigma_e e^\omega_c \mathscr{R}^c_{a\omega\sigma}
\end{align}
, where $e=\det(e^a_\mu)=\sqrt{-g}$.
\subsection{EoM in Vielbeins }
\noindent The variation is similar to Eq.\eqref{eq:Action_g}:
\begin{align} \label{eq:Action_e}
\delta S &= \int \left(\frac{\partial \mathscr{L}_{GR}}{\partial e^{\mu}_a}\delta e^{\mu}_a + \frac{\partial \mathscr{L}_{GR}}{\partial \omega^b_{c\mu}} \delta \omega^b_{c\mu} + \frac{\partial \mathscr{L}_{GR}}{\partial \omega^b_{c\mu,\gamma}} \delta \omega^b_{c\mu,\gamma} \right) d^4x \nonumber \\
&= \int \underbracket[0.4pt][0pt]{\frac{\partial \mathscr{L}_{GR}}{\partial e^{\mu}_a }}_{EoM\#3}\delta e^{\mu}_a d^4x + \int \underbracket[0.4pt][0pt]{\left[ \frac{\partial \mathscr{L}_{GR}}{\partial \omega^b_{c\mu}} - \left(\frac{\partial \mathscr{L}_{GR}}{\partial \omega^b_{c\mu,\gamma}}\right)_{,\gamma}\right]}_{EoM\#4} \delta \omega^b_{c\mu} d^4 x + \int \left[ \frac{\partial \mathscr{L}_{GR}}{\partial \omega^b_{c\mu,\gamma}}\delta\omega^b_{c\mu}\right]_{,\gamma} d^4x
\end{align}
\noindent Since $g_{\mu\nu}=\eta_{ab} e_\mu^a e_\nu^b$, the variation $\delta g_{\mu\nu}=2\,\eta_{ab} e_\mu^a \delta e_\nu^b$, the $EoM\#3$ is similar to $EoM\#1$. $EoM\#4$ is also similar to $EoM\#2$.
\noindent $EoM\#3$
\begin{align*}
\frac{\partial e}{\partial e^{\mu}_a}&=e\, e^\nu_b\frac{\partial e^b_\nu }{\partial e^{\mu}_a}\\
&=-e\, \frac{\partial e^\nu_b }{\partial e^{\mu}_a}e^b_\nu\\
&=-e\, \delta^\nu_\mu \delta^a_be^b_\nu\\
&=-e\, e^a_\mu\\
\\
e^\nu_b e^c_\nu&=\delta^c_b\\
\frac{\partial }{\partial e^{\mu}_a}\left(e^\nu_b e^c_\nu \right)
&=\frac{\partial e^\nu_b}{\partial e^{\mu}_a} e^c_\nu +e^\nu_b\frac{\partial e^c_\nu}{\partial e^{\mu}_a}=0\\
\delta^\nu_\mu\delta^a_b e^c_\nu +e^\nu_b\frac{\partial e^c_\nu}{\partial e^{\mu}_a}&=0\\
e^\nu_b\frac{\partial e^c_\nu}{\partial e^{\mu}_a}&=-\delta^a_b e^c_\mu \\
\frac{\partial e^c_\nu}{\partial e^{\mu}_a}&=-e^b_\nu\delta^a_b e^c_\mu =-e^a_\nu e^c_\mu \\
\end{align*}
\begin{align*}
\frac{\partial \mathscr{L}_{GR}}{\partial e^{\mu}_a }
&=\frac{\partial}{\partial e^{\mu}_a }
\left(
\frac{1}{2\kappa}e\, \eta^{de}e^\sigma_e e^\omega_c \mathscr{R}^c_{d\omega\sigma}
\right)\\
&=\frac{1}{2\kappa}\eta^{de}\mathscr{R}^c_{d\omega\sigma}
\frac{\partial}{\partial e^{\mu}_a }\left(
e\, e^\sigma_e e^\omega_c
\right)\\
&=\frac{1}{2\kappa}\eta^{de}\mathscr{R}^c_{d\omega\sigma}
\left(
\frac{\partial e}{\partial e^{\mu}_a }\, e^\sigma_e e^\omega_c
+e\, \frac{\partial e^\sigma_e}{\partial e^{\mu}_a } e^\omega_c
+e\, e^\sigma_e \frac{\partial e^\omega_c }{\partial e^{\mu}_a }
\right)\\
&=\frac{1}{2\kappa}\eta^{de}\mathscr{R}^c_{d\omega\sigma}
\left(
-e\, e^a_\mu e^\sigma_e e^\omega_c
+e\, \delta^\sigma_\mu \delta^a_e e^\omega_c
+e\, e^\sigma_e \delta^\sigma_\mu \delta^a_c
\right)\\
&=\frac{1}{2\kappa}
\left(
-e\, e^a_\mu e^\sigma_e e^\omega_c \eta^{de}\mathscr{R}^c_{d\omega\sigma}
+e\, \delta^\sigma_\mu \delta^a_e e^\omega_c \eta^{de}\mathscr{R}^c_{d\omega\sigma}
+e\, e^\sigma_e \delta^\omega_\mu \delta^a_c \eta^{de}\mathscr{R}^c_{d\omega\sigma}
\right)\\
&=\frac{1}{2\kappa}
\left(
-e\, e^a_\mu \eta^{de} e^\sigma_e e^\omega_c \mathscr{R}^c_{d\omega\sigma}
+e\, \eta^{da} e^\omega_c \mathscr{R}^c_{d\omega\mu}
+e\, \eta^{de} e^\sigma_e \mathscr{R}^a_{d\mu\sigma}
\right)\\
&=\frac{1}{2\kappa}\sqrt{-g}
\left(
-\, e^a_\mu R
+\, \eta^{da} e^\kappa_d R_{\kappa\mu}
-\, \eta^{de} e^\sigma_e \mathscr{R}^a_{d\sigma\mu}
\right)\\
&=\frac{1}{2\kappa}\sqrt{-g}
\left(
-\, e^a_\mu R
+\, \eta^{da} e^\kappa_d R_{\kappa\mu}
-\, \eta^{de} e^\sigma_e e^a_\alpha e^\beta_d R^\alpha_{\beta\sigma\mu}
\right)\\
&=\frac{1}{2\kappa}\sqrt{-g}
\left(
-\, e^a_\mu R
+\,e^a_\sigma g^{\kappa\sigma} R_{\kappa\mu}
-\, e^a_\alpha g^{\beta\sigma} R^\alpha_{\beta\sigma\mu}
\right)\\
\\
&=\frac{1}{2\kappa}\sqrt{-g}
\left(
-\, e^a_\mu R
+\,e^a_\sigma g^{\kappa\sigma} R_{\kappa\mu}
-\, e^a_\alpha g^{\beta\sigma} g^{\alpha\kappa} R_{\kappa\beta\sigma\mu}
\right)\\
&=\frac{1}{2\kappa}\sqrt{-g}
\left(
-\, e^a_\mu R
+\,e^a_\sigma g^{\kappa\sigma} R_{\kappa\mu}
+\, e^a_\alpha g^{\beta\sigma} g^{\alpha\kappa} R_{\beta\kappa\sigma\mu}
\right)\\
&=\frac{1}{2\kappa}\sqrt{-g}
\left(
-\, e^a_\mu R
+\,e^a_\sigma g^{\kappa\sigma} R_{\kappa\mu}
+\, e^a_\alpha g^{\alpha\kappa} R^\sigma_{\kappa\sigma\mu}
\right)\\
&=\frac{1}{2\kappa}\sqrt{-g}
\left(
-\, e^a_\mu R
+\,e^a_\sigma g^{\kappa\sigma} R_{\kappa\mu}
+\, e^a_\alpha g^{\alpha\kappa} R_{\kappa\mu}
\right)\\
&=\frac{1}{2\kappa}\sqrt{-g}
\left(
-\, e^a_\mu R
+2\,e^a_\sigma g^{\kappa\sigma} R_{\kappa\mu}
\right)
\end{align*}
\begin{align*}
\eta^{da} e^\omega_c \mathscr{R}^c_{d\omega\mu}
+\eta^{de} e^\sigma_e \mathscr{R}^a_{d\mu\sigma}
&=\eta^{de}\delta^a_e \delta^a_e e^\omega_c \mathscr{R}^c_{d\omega\mu}
+\eta^{de} e^\omega_e \delta^a_c \mathscr{R}^c_{d\mu\omega}\\
&=\eta^{de}
\left(
\delta^a_e e^\omega_c
-e^\omega_e \delta^a_c
\right)
\mathscr{R}^c_{d\omega\mu}\\
&=\eta^{de}e^\omega_f
\left(
\delta^a_e \delta^f_c
-\delta^f_e \delta^a_c
\right)
\mathscr{R}^c_{d\omega\mu}\\
\end{align*}
\begin{align*}
R&=\eta^{ae}e^\sigma_e e^\omega_c \mathscr{R}^c_{a\omega\sigma}\\
R_{\kappa\sigma} &= \delta^\omega_\varepsilon R_{\kappa\omega\sigma}^\varepsilon = \delta^\omega_\varepsilon e^a_\kappa e^\varepsilon_c \mathscr{R}_{a\omega\sigma}^c \\
&= e^a_\kappa e^\omega_c\mathscr{R}_{a\omega\sigma}^c\\
e^\kappa_a R_{\kappa\sigma}
&= e^\omega_c\mathscr{R}_{a\omega\sigma}^c\\
\end{align*}
\begin{align*}
\frac{\partial g^{\omega\sigma}}{\partial e^{\mu}_a}
&=\frac{\partial }{\partial e^{\mu}_a}
\left(
\eta^{ce} e^\omega_c e^\sigma_e
\right)\\
&=\eta^{ce} \delta^\omega_\mu \delta^a_c e^\sigma_e
+\eta^{ce} e^\omega_c \delta^\sigma_\mu \delta^a_e\\
&=\eta^{ae} \delta^\omega_\mu e^\sigma_e
+\eta^{ca} e^\omega_c \delta^\sigma_\mu \\
&=\eta^{ae}\left( \delta^\omega_\mu e^\sigma_e
+e^\omega_e \delta^\sigma_\mu \right)\\
\\
\to \delta g^{\omega\sigma}&=\frac{\partial g^{\omega\sigma}}{\partial e^{\mu}_a} \delta e^{\mu}_a\\
&=\eta^{ae}\left( \delta^\omega_\mu e^\sigma_e
+e^\omega_e \delta^\sigma_\mu \right) \delta e^{\mu}_a
\end{align*}
\begin{align*}
\frac{\partial \mathscr{L}_{GR}}{\partial g^{\omega\sigma} } \delta g^{\omega\sigma}
&=\frac{\partial \mathscr{L}_{GR}}{\partial g^{\omega\sigma} } \frac{\partial g^{\omega\sigma}}{\partial e^{\mu}_a}\delta e^{\mu}_a \\
&=\frac{1}{2\kappa} \sqrt{-g}\left( R_{\omega\sigma} - \frac{1}{2} g_{\omega\sigma} R \right)\eta^{ae}\left( \delta^\omega_\mu e^\sigma_e
+e^\omega_e \delta^\sigma_\mu \right) \delta e^{\mu}_a\\
&=\frac{1}{2\kappa} \sqrt{-g}\,\eta^{ae}\left( R_{\omega\sigma}\left( \delta^\omega_\mu e^\sigma_e
+e^\omega_e \delta^\sigma_\mu \right) - \frac{1}{2} g_{\omega\sigma} R \left( \delta^\omega_\mu e^\sigma_e
+e^\omega_e \delta^\sigma_\mu \right)\right) \delta e^{\mu}_a\\
&=\frac{1}{2\kappa} \sqrt{-g}\,\eta^{ae}\left( R_{\omega\sigma} \delta^\omega_\mu e^\sigma_e
+R_{\omega\sigma} e^\omega_e \delta^\sigma_\mu
-\frac{1}{2} g_{\omega\sigma} R \delta^\omega_\mu e^\sigma_e
-\frac{1}{2} g_{\omega\sigma} R e^\omega_e \delta^\sigma_\mu \right) \delta e^{\mu}_a\\
&=\frac{1}{2\kappa} \sqrt{-g}\,\eta^{ae}\left( R_{\mu\sigma}e^\sigma_e
+R_{\omega\mu} e^\omega_e
-\frac{1}{2} g_{\mu\sigma} R\, e^\sigma_e
-\frac{1}{2} g_{\omega\mu} R\, e^\omega_e \right) \delta e^{\mu}_a\\
&=\frac{1}{2\kappa} \sqrt{-g}\,\eta^{ae}\left( R_{\mu\sigma}e^\sigma_e
+R_{\omega\mu} e^\omega_e
-g_{\mu\sigma} R\, e^\sigma_e \right) \delta e^{\mu}_a\\
&=\frac{1}{2\kappa} \sqrt{-g} \left( 2R_{\mu\sigma} \eta^{ae}e^\sigma_e
-g_{\mu\sigma} R\, \eta^{ae}e^\sigma_e \right) \delta e^{\mu}_a\\
&=\frac{1}{2\kappa} \sqrt{-g}\left( 2R_{\mu\sigma} g^{\sigma\kappa}e^a_\kappa
-g_{\mu\sigma} R\, g^{\sigma\kappa}e^a_\kappa \right) \delta e^{\mu}_a\\
&=\frac{1}{2\kappa} \sqrt{-g} \left( 2R_{\mu\sigma} g^{\sigma\kappa}e^a_\kappa
- R\,e^a_\mu \right) \delta e^{\mu}_a\\
&=\frac{\partial \mathscr{L}_{GR}}{\partial e^{\mu}_a } \delta e^{\mu}_a
\end{align*}
\noindent $EoM\#4$
\noindent \textbf{Eq.\eqref{eq:/omega,}}
\begin{align*}
\frac{\partial \mathscr{L}_{GR}}{\partial \omega^b_{c\mu,\gamma}}
&= \frac{1}{2\kappa} e\, \eta^{ce}
\left(e^\mu_e e^\gamma_b - e^\gamma_e e^\mu_b \right)
\end{align*}
\begin{align*}
\left(\frac{\partial \mathscr{L}_{GR}}{\partial \omega^b_{c\mu,\gamma}} \right)_{,\gamma}
&= \frac{1}{2\kappa} \eta^{ce}
\left(e\ e^\mu_e e^\gamma_b
-e\ e^\gamma_e e^\mu_b \right)_{{,\gamma}}
\end{align*}
\noindent \textbf{Eq.\eqref{eq:/omega}}
\begin{align*}
\frac{\partial \mathscr{L}_{GR}}{\partial \omega^b_{c\gamma}}
&=
\frac{1}{2\kappa} \eta^{ae} \left(e\ e^{{\mu}}_e e^\gamma_b -e\ e^\gamma_e e^{{\mu}}_b \right)\omega ^c_{a{{\mu}}}
-\frac{1}{2\kappa}\eta^{ce}\left(e\ e^{{\mu}}_e e^\gamma_f -e \ e^\gamma_e e^{{\mu}}_f \right)\omega ^f_{b{{\mu}}}
\end{align*}
\begin{align*}
e_{,\gamma}=\left( \sqrt{-g} \right)_{,\gamma} &= -\frac{1}{2} \sqrt{-g} \, g_{\phi\psi} {g^{\phi\psi}}_{, \gamma} \\
&=-\frac{1}{2} \sqrt{-g} \, g_{\phi\psi} (- g^{\eta\psi}\Gamma_{\eta\gamma}^{\phi} -g^{\phi\eta}\Gamma_{\eta\gamma}^{\psi})\\
&=\frac{1}{2} \sqrt{-g}( g_{\phi\psi} g^{\eta\psi}\Gamma_{\eta\gamma}^{\phi} + g_{\phi\psi} g^{\phi\eta}\Gamma_{\eta\gamma}^{\psi})\\
&=\frac{1}{2} \sqrt{-g}( \delta ^\eta _\phi \Gamma_{\eta\gamma}^{\phi} + \delta ^\eta _\psi \Gamma_{\eta\gamma}^{\psi})\\
&=\frac{1}{2} \sqrt{-g}( \Gamma_{\eta\gamma}^{\eta} + \Gamma_{\eta\gamma}^{\eta})\Gamma_{\eta\gamma}^{\eta})\\
&= \sqrt{-g}\Gamma_{\eta\gamma}^{\eta}\\
&=e\ e^\eta_a e_\eta^b \omega_{b\gamma}^{a}\\
&=e\ \delta^b_a \omega_{b\gamma}^{a}\\
&=e\ \omega_{a\gamma}^{a}
\end{align*}
\subsection{Canonical Energy-Momentum Tensor Derived by Noether's Theorem}
Now, we apply the Noether variation:
\begin{align*}
\Delta S = \int \left[EoM \right] d^4 x + \int \left[ \partial_\gamma\left(\frac{\partial \mathscr{L}_{GR}}{\partial \omega^b_{c\mu,\gamma}}\delta\omega^b_{c\mu}\right) + (\mathscr{L}_{GR} \delta x^\gamma)_{,\gamma}\right] d^4 x
\end{align*}
\noindent The spin connection $\omega^b_{c\mu}$ is $\frak{gl}$-value 1-form, we apply similar variation as Eq.\eqref{eq:varaition_gauge}:
\begin{align}
\Delta \omega^b_{c\mu} &= \delta \omega^b_{c\mu} + \underbrace{\delta x^\varepsilon \partial_\varepsilon \omega^b_{c\mu} + \omega^b_{c\varepsilon}\partial_\mu \delta x^\varepsilon}_{\hat{\mathcal{L}}_{\delta x} \mathbf{\omega}}
\end{align}
\noindent We have:
\begin{align*}
\Delta S &= \int \left[EoM \right] d^4 x + \int \left[ \partial_\gamma\left(\frac{\partial \mathscr{L}_{GR}}{\partial \omega^b_{c\mu,\gamma}}\left(\Delta \omega^b_{c\mu} - \delta x^\varepsilon \partial_\varepsilon \omega^b_{c\mu} - \omega^b_{c\varepsilon}\partial_\mu \delta x^\varepsilon \right)\right) + (\mathscr{L}_{GR} \delta x^\gamma)_{,\gamma}\right] d^4 x \\
&= \int \left[EoM \right] d^4 x + \int \underbracket[0.4pt][0pt]{\partial_\gamma}_{(*)}\left[ \frac{\partial \mathscr{L}_{GR}}{\partial \omega^b_{c\mu,\gamma}}\Delta \omega^b_{c\mu} - \left(\frac{\partial \mathscr{L}_{GR}}{\partial \omega^b_{c\mu,\gamma}}\omega^b_{c\mu,\varepsilon}\delta x^\varepsilon + \underbracket[0.4pt][0pt]{\frac{\partial \mathscr{L}_{GR}}{\partial \omega^b_{c\mu,\gamma}}\omega^b_{c\varepsilon}\delta x^\varepsilon_{,\mu}}_{(*)} - \delta^\gamma_\varepsilon \mathscr{L}_{GR} \delta x^\varepsilon \right)\right] d^4 x
\end{align*}
\noindent Evaluate the $(*)$ term:
\begin{align*} \label{eq:(*)}
\underbracket[0.4pt][0pt]{\partial_\gamma \left[\frac{\partial \mathscr{L}_{GR}}{\partial \omega^b_{c\mu,\gamma}}\omega^b_{c\varepsilon}\delta x^\varepsilon_{,\mu}\right]}_{(*)}&=
\underbracket[0.4pt][0pt]{\partial_\gamma \left[\frac{\partial \mathscr{L}_{GR}}{\partial \omega^b_{c\mu,\gamma}}\omega^b_{c\varepsilon}\delta x^\varepsilon\right]_{,\mu}}_{(*1)}
-\underbracket[0.4pt][0pt]{\partial_\gamma \left[ \left(\frac{ \partial \mathscr{L}_{GR}}{\partial \omega^b_{c\mu,\gamma}}\right)_{,\mu}\omega^b_{c\varepsilon}\delta x^\varepsilon\right]}_{(*2)}
-\underbracket[0.4pt][0pt]{\partial_\gamma \left[\frac{\partial \mathscr{L}_{GR}}{\partial \omega^b_{c\mu,\gamma}}\omega^b_{c\varepsilon,\mu}\delta x^\varepsilon\right]}_{(*3)}
\end{align*}
\noindent We first calculate $\frac{\partial \mathscr{L}_{GR}}{\partial \omega^b_{c\mu,\gamma}}$ for later use:
\begin{align} \label{eq:/omega,}
\frac{\partial \mathscr{L}_{GR}}{\partial \omega^b_{c\mu,\gamma}} &= \frac{1}{2\kappa} e\, \eta^{ce}
\left(e^\mu_e e^\gamma_b - e^\gamma_e e^\mu_b \right) \left(=- \frac{\partial \mathscr{L}_{GR}}{\partial \omega^b_{c\gamma,\mu}}\right)
\end{align}
\noindent The $(*1)$ term:
\begin{align*}
\underbracket[0.4pt][0pt]{\partial_\gamma \left[\frac{\partial \mathscr{L}_{GR}}{\partial \omega^b_{c\mu,\gamma}}\omega^b_{c\varepsilon}\delta x^\varepsilon\right]_{,\mu}}_{(*1)}=\left[ \underbracket[0.4pt][0pt]{\frac{1}{2\kappa} e\, \eta^{ce}
\left(e^{\textcolor{red}{\mu}}_e e^{\textcolor{red}{\gamma}}_b - e^{\textcolor{red}{\gamma}}_e e^{\textcolor{red}{\mu}}_b \right)}_{\eqref{eq:/omega,}} \omega^b_{c\varepsilon}\delta x^\varepsilon\right]_{,\textcolor{red}{\mu\gamma}}=0
\end{align*}
\noindent The $(*2)$ term rely on $EoM\#4$, using
\begin{align*}
-\underbracket[0.4pt][0pt]{\partial_\gamma \left[ \left(\frac{ \partial \mathscr{L}_{GR}}{\partial \omega^b_{c\mu,\gamma}}\right)_{,\mu}\omega^b_{c\varepsilon}\delta x^\varepsilon\right]}_{(*2)}
\underbrace{=}_{\eqref{eq:/omega,}}
-\partial_\gamma \left[ \left( \textcolor{red}{-} \frac{ \partial \mathscr{L}_{GR}}{\partial \omega^b_{c\textcolor{red}{\gamma,\mu}}}\right)_{,\mu}\omega^b_{c\varepsilon}\delta x^\varepsilon\right]
\underbrace{=}_{EoM\#4}
\partial_\gamma \left( \frac{ \partial \mathscr{L}_{GR}}{\partial \omega^b_{c\gamma}}\omega^b_{c\varepsilon}\delta x^\varepsilon\right)
\end{align*}
\noindent and
\begin{align}\label{eq:/omega}
\frac{ \partial \mathscr{L}_{GR}}{\partial \omega^b_{c\gamma}}=\frac{1}{2\kappa} e\,
\eta^{ae}\left(e^\gamma_e e^\mu_b- e^\mu_e e^\gamma_b \right)\omega^c_{a\mu}
+\frac{1}{2\kappa} e\, \eta^{ce} \left(e^\mu_e e^\gamma_f -e^\gamma_e e^\mu_f \right)\omega^f_{b\mu}
\end{align}
\noindent We can calulate
\begin{align} \label{eq:/omega*/omega}
\frac{\partial \mathscr{L}_{GR}}{\partial \omega^b_{c\gamma}}\omega^b_{c\varepsilon}
&=\frac{\partial \mathscr{L}_{GR}}{\partial \omega^b_{c\mu,\gamma}}
\left( \omega^b_{{{d}}\varepsilon}\omega^{{d}}_{{{c}}\mu}-
\omega^{{b}}_{{{d}}\mu}\omega^{{d}}_{c\varepsilon}
\right)
\end{align}
\noindent The $(*)$ term than become:
\begin{align*}
\underbracket[0.4pt][0pt]{\partial_\gamma \left[\frac{\partial \mathscr{L}_{GR}}{\partial \omega^b_{c\mu,\gamma}}\omega^b_{c\varepsilon}\delta x^\varepsilon_{,\mu}\right]}_{(*)}
&=\underbracket[0.4pt][0pt]{0}_{(*1)}
-\underbracket[0.4pt][0pt]{\partial_\gamma \left[\frac{\partial \mathscr{L}_{GR}}{\partial \omega^b_{c\mu,\gamma}}\omega^b_{c\varepsilon,\mu}\delta x^\varepsilon\right]}_{(*3)}
+\underbracket[0.4pt][0pt]{\partial_\gamma \left[ \frac{\partial \mathscr{L}_{GR}}{\partial \omega^b_{c\mu,\gamma}}
\left( \omega^b_{{{d}}\varepsilon}\omega^{{d}}_{{{c}}\mu}-
\omega^{{b}}_{{{d}}\mu}\omega^{{d}}_{c\varepsilon}
\right)\delta x^\varepsilon
\right]}_{(*2)}
\end{align*}
\noindent We have:
\begin{adjustwidth}{-1.5cm}{-1cm}
\begin{align*}
\Delta S &=\int \left[EoM \right] d^4 x + \int {\partial_\gamma}\left[ \frac{\partial \mathscr{L}_{GR}}{\partial \omega^b_{c\mu,\gamma}}\Delta \omega^b_{c\mu} - \left(\frac{\partial \mathscr{L}_{GR}}{\partial \omega^b_{c\mu,\gamma}}\omega^b_{c\mu,\varepsilon}\delta x^\varepsilon
-\underbracket[0.4pt][0pt]{\frac{\partial \mathscr{L}_{GR}}{\partial \omega^b_{c\mu,\gamma}}\omega^b_{c\varepsilon,\mu}\delta x^\varepsilon}_{(*3)}
+\underbracket[0.4pt][0pt]{ \frac{\partial \mathscr{L}_{GR}}{\partial \omega^b_{c\mu,\gamma}}\left(\omega^b_{d\varepsilon}\omega^d_{c\mu}-\omega^b_{d\mu}\omega^d_{c\varepsilon} \right)\delta x^\varepsilon}_{(*2)}
- \delta^\gamma_\varepsilon \mathscr{L}_{GR} \delta x^\varepsilon \right)\right] d^4 x \\
&=\int \left[EoM \right] d^4 x + \int {\partial_\gamma}\left[ \frac{\partial \mathscr{L}_{GR}}{\partial \omega^b_{c\mu,\gamma}}\Delta \omega^b_{c\mu} -
\left(\frac{\partial \mathscr{L}_{GR}}{\partial \omega^b_{c\mu,\gamma}}\left(\omega^b_{c\mu,\varepsilon}
-\omega^b_{c\varepsilon,\mu}
+ \omega^b_{d\varepsilon}\omega^d_{c\mu}-\omega^b_{d\mu}\omega^d_{c\varepsilon} \right) \delta x^\varepsilon
- \delta^\gamma_\varepsilon \mathscr{L}_{GR} \delta x^\varepsilon \right)\right] d^4 x \\
&=\int \left[EoM \right] d^4 x + \int {\partial_\gamma}\left[ \frac{\partial \mathscr{L}_{GR}}{\partial \omega^b_{c\mu,\gamma}}\Delta \omega^b_{c\mu} -
\left(\frac{\partial \mathscr{L}_{GR}}{\partial \omega^b_{c\mu,\gamma}}
\mathscr{R}^b_{c\varepsilon\mu}
- \delta^\gamma_\varepsilon \mathscr{L}_{GR} \right)\delta x^\varepsilon \right] d^4 x
\end{align*}
\end{adjustwidth}
\noindent The canonical energy-momentum tensor:
\begin{align}
\left(t_{GR}\right)^\gamma_\varepsilon&=\frac{\partial \mathscr{L}_{GR}}{\partial \omega^b_{c\mu,\gamma}}
\mathscr{R}^b_{c\varepsilon\mu}
- \delta^\gamma_\varepsilon \mathscr{L}_{GR} \nonumber\\
&=\frac{1}{2\kappa} e\,\eta^{ce}\left(e^\gamma_e e^\mu_b-e^\mu_e e^\gamma_b \right)\mathscr{R}^b_{c\varepsilon\mu}-\delta^\gamma_\varepsilon \mathscr{L}_{GR} \nonumber\\ &=\frac{1}{2\kappa} \left(g^{\beta\mu}R^\gamma_{\beta\varepsilon\mu}+g^{\beta\gamma}R_{\beta\varepsilon}-\delta^\gamma_\varepsilon R \right)\sqrt{-g} \label{eq:Noether_t}
\end{align}
\begin{align}
\left(t_{GR}\right)^\gamma_\varepsilon&=\frac{\partial \mathscr{L}_{GR}}{\partial \omega^b_{c\mu,\gamma}}
\mathscr{R}^b_{c\varepsilon\mu}
- \delta^\gamma_\varepsilon \mathscr{L}_{GR} \nonumber\\
&=\frac{1}{2\kappa} e\,\eta^{ce}\left(e^\gamma_e e^\mu_b-e^\mu_e e^\gamma_b \right)\mathscr{R}^b_{c\varepsilon\mu}-\delta^\gamma_\varepsilon e\, \eta^{ae}e^\sigma_e e^\omega_c \mathscr{R}^c_{a\omega\sigma} \nonumber\\
&=\frac{1}{2\kappa} \left(g^{\beta\mu}R^\gamma_{\beta\varepsilon\mu}+g^{\beta\gamma}R_{\beta\varepsilon}-\delta^\gamma_\varepsilon R \right)\sqrt{-g} \label{eq:Noether_t}
\end{align}
\begin{align*}
g^{\psi\varepsilon}g_{\phi\gamma}\left(t_{GR}\right)^\gamma_\varepsilon
&=\frac{1}{2\kappa} g^{\psi\varepsilon}g_{\phi\gamma}\left(g^{\beta\mu}R^\gamma_{\beta\varepsilon\mu}+g^{\beta\gamma}R_{\beta\varepsilon}-\delta^\gamma_\varepsilon R \right)\sqrt{-g} \\
&=\frac{1}{2\kappa} \left(
g^{\psi\varepsilon}g_{\phi\gamma}g^{\beta\mu}R^\gamma_{\beta\varepsilon\mu}
+g^{\psi\varepsilon}g_{\phi\gamma}g^{\beta\gamma}R_{\beta\varepsilon}
-g^{\psi\varepsilon}g_{\phi\gamma}\delta^\gamma_\varepsilon R
\right)\sqrt{-g} \\
&=\frac{1}{2\kappa} \left(
g^{\psi\varepsilon}g_{\phi\gamma}g^{\beta\mu}R^\gamma_{\beta\varepsilon\mu}
+g^{\psi\varepsilon}R_{\phi\varepsilon}
-\delta^\psi_\phi R
\right)\sqrt{-g} \\
\end{align*}
\noindent The canonical energy-momentum 2-form:
\begin{align*}
\left(t_{GR}\right)_{\alpha\varepsilon}&=g_{\alpha\gamma}t^\gamma_\varepsilon
=\frac{1}{2\kappa} \left(g_{\alpha\gamma}g^{\beta\mu}R^\gamma_{\beta\varepsilon\mu}
+R_{\alpha\varepsilon}
-g_{\alpha\varepsilon} R \right)\sqrt{-g}
\end{align*}
\noindent If metric compatible, we have:
\begin{align} \label{eq:t_gravity}
\left(t_{GR}\right)_{\alpha\varepsilon}&=\frac{1}{\kappa} \mathbb{G}_{{\alpha}{\varepsilon}}\sqrt{-g}
\end{align}
\noindent This canonical energy-momentum 2-form has following properties:\\
\noindent 1. symmetric\\
\noindent 2. coordinate independent\\
\noindent 3. vanish when vacuum, which does not depend on the choice of the connection.
\subsection{Alternative Derivation of Einstein Field Equation}
\begin{align*}
S = \int d^4x \, \mathscr{L}_{GR}+ \mathscr{L}_{EM}
\end{align*}
\begin{align*}
\mathscr{L}_{GR}=\frac{1}{2\kappa} \sqrt{-g} g^{\kappa\sigma}\delta^\omega_\varepsilon R^\varepsilon_{\kappa\omega\sigma}
= \frac{1}{2\kappa}\, \eta^{ae}e^\sigma_e e^\omega_c \mathscr{R}^c_{a\omega\sigma}
\end{align*}
\begin{align*}
\mathscr{L}_{EM}= -\frac{1}{16\pi c} g^{\mu\alpha}g^{\nu\beta}F_{\alpha\beta}F_{\mu\nu}\sqrt{-g}
\end{align*}
\begin{align*}
x^\gamma &\to x^\gamma+ \delta x^\gamma\\
A_\nu &\to A_\nu+\delta A_\nu \\
\omega^a_{b\nu} &\to \omega^a_{b\nu}+\delta \omega^a_{b\nu}
\end{align*}
\begin{adjustwidth}{-2.3cm}{-1cm}
\begin{align*}
\Delta S =
\int \left[ \frac{\partial \mathscr{L}_{GR}}{\partial \omega^b_{c\nu}} - \left(\frac{\partial \mathscr{L}_{GR} }{\partial \omega^b_{c\nu,\mu}}\right)_{,\mu}\right]\delta \omega^b_{c\nu}
+
\left[ \frac{\partial \mathscr{L}_{EM}}{\partial A_\nu} - \left(\frac{\partial\mathscr{L}_{EM}}
{\partial A_{\nu,\mu}}\right)_{,\mu} \right] \delta A_\nu
+\partial_\mu \left\{\frac{\partial \mathscr{L}_{GR} }{\partial \omega^b_{c\nu,\mu}}\Delta \omega^b_{c\nu} + \frac{\partial \mathscr{L}_{EM}}{\partial A_{\nu,\mu} }\Delta A_\nu - \left[\left(t_{GR} \right)^\mu_\gamma +\left(t_{EM} \right)^\mu_\gamma \right]\delta x^\gamma \right\} d^4x
\end{align*}
\end{adjustwidth}
\section{Equivalence of Einstein-Hilbert EMT and Noether canonical EMT}
\begin{align*}
\left(\hat{\mathcal{L}}_{\delta X}\, g\right)_{\mu\nu}
&=g_{\mu\nu,\gamma} \delta X^\gamma+g_{\gamma\nu} {\delta X^\gamma}_{,\mu}+g_{\mu\gamma} {\delta X^\gamma}_{,\nu}\\
&=\left(g_{\mu\nu,\gamma}-g_{\eta\nu}\Gamma^\eta_{\mu\gamma}-g_{\mu\eta}\Gamma^\eta_{\nu\gamma}\right) \delta X^\gamma
+g_{\eta\nu}\Gamma^\eta_{\mu\gamma}\delta X^\gamma
+g_{\mu\eta}\Gamma^\eta_{\nu\gamma}\delta X^\gamma
+g_{\gamma\nu} {\delta X^\gamma}_{,\mu}+g_{\mu\gamma} {\delta X^\gamma}_{,\nu}\\
&=g_{\mu\nu;\gamma} \delta X^\gamma
+g_{\textcolor{red}{\gamma}\nu}\Gamma^{\textcolor{red}{\gamma}}_{\mu\textcolor{blue}{\eta}}\delta X^{\textcolor{blue}{\eta}}
+g_{\mu{\textcolor{red}{\gamma}}}\Gamma^{\textcolor{red}{\gamma}}_{\nu{\textcolor{blue}{\eta}}}\delta X^{\textcolor{blue}{\eta}}
+g_{\gamma\nu} {\delta X^\gamma}_{,\mu}+g_{\mu\gamma} {\delta X^\gamma}_{,\nu}\\
&=g_{\mu\nu;\gamma} \delta X^\gamma
+g_{\gamma\nu} {\delta X^\gamma}_{;\mu}+g_{\mu\gamma} {\delta X^\gamma}_{;\nu}\\
&= g_{\gamma\nu} {\delta X^\gamma}_{;\mu}+g_{\mu\gamma} {\delta X^\gamma}_{;\nu}
\end{align*}
\begin{align*}
{g_{\mu\nu,\gamma}}
&=\left(g_{\mu\alpha} g_{\nu\beta} g^{\alpha\beta} \right)_{,\gamma}\\
&=g_{\mu\alpha,\gamma} g_{\nu\beta} g^{\alpha\beta}
+g_{\mu\alpha} g_{\nu\beta,\gamma} g^{\alpha\beta}
+g_{\mu\alpha} g_{\nu\beta} {g^{\alpha\beta}}_{,\gamma} \\
&=g_{\mu\alpha,\gamma}\delta_\nu^\alpha
+g_{\nu\beta,\gamma} \delta_\mu^\beta
+g_{\mu\alpha} g_{\nu\beta} {g^{\alpha\beta}}_{,\gamma} \\
&=g_{\mu\nu,\gamma}
+g_{\nu\mu,\gamma}
+g_{\mu\alpha} g_{\nu\beta} {g^{\alpha\beta}}_{,\gamma} \\
\to g_{\mu\nu,\gamma}
&=- g_{\mu\alpha} g_{\nu\beta} {g^{\alpha\beta}}_{,\gamma}\\
&=- g_{\mu\alpha} g_{\nu\beta}
\left(
-g^{\sigma\beta}\Gamma^\alpha_{\sigma\gamma}
-g^{\alpha\sigma}\Gamma^\beta_{\sigma\gamma}
+\frac{2}{\mathbb{D}-1}g^{\alpha\beta}T_\gamma
\right)\\
&=g_{\mu\alpha}\Gamma^\alpha_{\nu\gamma}
+g_{\nu\alpha}\Gamma^\alpha_{\mu\gamma}
-\frac{2}{\mathbb{D}-1}g_{\mu\nu}T_\gamma
\end{align*}
\begin{align*}
\frac{\partial\mathscr{L}}{\partial g_{\mu\nu}}\delta g_{\mu\nu}
&=\frac{\partial\mathscr{L}}{\partial g_{\mu\nu}}\left(\hat{\mathcal{L}}_{\delta X}\, g\right)_{\mu\nu}\\
&=\frac{1}{2}t^{\mu\nu}\left(g_{\gamma\nu} {\delta X^\gamma}_{;\mu}+g_{\mu\gamma} {\delta X^\gamma}_{;\nu}\right)\\
&=t^{\mu\nu}g_{\gamma\nu} {\delta X^\gamma}_{;\mu}\\
&={t^\mu}_{\gamma} {\delta X^\gamma}_{;\mu}\\
&={T^\mu}_{\gamma}\sqrt{-g}\, {\delta X^\gamma}_{;\mu}\\
&=\left({T^\mu}_{\gamma}{\delta X^\gamma}\right)_{;\mu}\sqrt{-g} \, \, -{T^\mu}_{\gamma;\mu}\sqrt{-g}\,\,{\delta X^\gamma}\\
&=\left({T^\mu}_{\gamma}{\delta X^\gamma}\sqrt{-g}\right)_{,\mu} \, \, -\left({T^\mu}_{\gamma}\sqrt{-g}\right)_{;\mu}\,\,{\delta X^\gamma}\\
&=\left({t^\mu}_{\gamma}{\delta X^\gamma}\right)_{,\mu} \, \, -{t^\mu}_{\gamma;\mu}{\delta X^\gamma}\\
\end{align*}
\begin{adjustwidth}{-2.5cm}{-1cm}
\begin{align*}
\left(\hat{\mathcal{L}}_{\delta X}\, g\right)_{\mu\nu}
&=g_{\mu\nu,\gamma} \delta X^\gamma+g_{\gamma\nu} {\delta X^\gamma}_{,\mu}+g_{\mu\gamma} {\delta X^\gamma}_{,\nu}\\
&=\left(
g_{\mu\nu,\gamma}-g_{\eta\nu}\Gamma^\eta_{\mu\gamma}-g_{\mu\eta}\Gamma^\eta_{\nu\gamma}
+\frac{2}{\mathbb{D}-1}g_{\mu\nu}T_\gamma
\right) \delta X^\gamma
+g_{\eta\nu}\Gamma^\eta_{\mu\gamma}\delta X^\gamma
+g_{\mu\eta}\Gamma^\eta_{\nu\gamma}\delta X^\gamma
-\frac{2}{\mathbb{D}-1}g_{\mu\nu}T_\gamma \delta X^\gamma
+g_{\gamma\nu} {\delta X^\gamma}_{,\mu}+g_{\mu\gamma} {\delta X^\gamma}_{,\nu}\\
&=\underbracket{g_{\mu\nu;\gamma}}_{=0} \delta X^\gamma
+g_{\textcolor{red}{\gamma}\nu}\Gamma^{\textcolor{red}{\gamma}}_{\mu\textcolor{blue}{\eta}}\delta X^{\textcolor{blue}{\eta}}
+g_{\mu{\textcolor{red}{\gamma}}}\Gamma^{\textcolor{red}{\gamma}}_{\nu{\textcolor{blue}{\eta}}}\delta X^{\textcolor{blue}{\eta}}
+g_{\gamma\nu} {\delta X^\gamma}_{,\mu}+g_{\mu\gamma} {\delta X^\gamma}_{,\nu}
-\frac{2}{\mathbb{D}-1}g_{\mu\nu}T_\gamma \delta X^\gamma\\
&=g_{{\gamma}\nu}\Gamma^{{\gamma}}_{{\eta}\mu}\delta X^{{\eta}}
+g_{{\gamma}\nu}T^{{\gamma}}_{\mu{\eta}}\delta X^{{\eta}}
+g_{\mu{{\gamma}}}\Gamma^{{\gamma}}_{{{\eta}\nu}}\delta X^{{\eta}}
+g_{\mu{{\gamma}}}T^{{\gamma}}_{\nu{{\eta}}}\delta X^{{\eta}}
+g_{\gamma\nu} {\delta X^\gamma}_{,\mu}+g_{\mu\gamma} {\delta X^\gamma}_{,\nu}
-\frac{2}{\mathbb{D}-1}g_{\mu\nu}T_\gamma \delta X^\gamma\\
&=g_{\gamma\nu} {\delta X^\gamma}_{;\mu}+g_{\mu\gamma} {\delta X^\gamma}_{;\nu}
+\frac{1}{\mathbb{D}-1}g_{{\gamma}\nu}\left(
\delta^{{\gamma}}_{\mu} T_{\eta}
-\delta^{{\gamma}}_{\eta} T_{\mu}
\right)\delta X^{{\eta}}
+\frac{1}{\mathbb{D}-1}g_{\mu{{\gamma}}}\left(
\delta^{{\gamma}}_{\nu} T_{\eta}
-\delta^{{\gamma}}_{\eta} T_{\nu}
\right)\delta X^{{\eta}}
+
-\frac{2}{\mathbb{D}-1}g_{\mu\nu}T_\gamma \delta X^\gamma\\
&=g_{\gamma\nu} {\delta X^\gamma}_{;\mu}+g_{\mu\gamma} {\delta X^\gamma}_{;\nu}
+\frac{1}{\mathbb{D}-1}\left(
g_{\mu\nu} T_{\eta}
-g_{\eta\nu} T_{\mu}
\right)\delta X^{{\eta}}
+\frac{1}{\mathbb{D}-1}\left(
g_{\mu{\nu}} T_{\eta}
-g_{\mu{\eta}} T_{\nu}
\right)\delta X^{{\eta}}
-\frac{2}{\mathbb{D}-1}g_{\mu\nu}T_\gamma \delta X^\gamma\\
&=g_{\gamma\nu} {\delta X^\gamma}_{;\mu}+g_{\mu\gamma} {\delta X^\gamma}_{;\nu}
+\frac{1}{\mathbb{D}-1}\left(
\cancel{g_{\mu\nu} T_{\gamma}\delta X^{{\gamma}}}
-g_{\gamma\nu} T_{\mu}\delta X^{{\gamma}}
\right)
+\frac{1}{\mathbb{D}-1}\left(
\cancel{g_{\mu{\nu}} T_{\gamma}\delta X^{{\gamma}}}
-g_{\mu{\gamma}} T_{\nu}\delta X^{{\gamma}}
\right)
-\cancel{\frac{2}{\mathbb{D}-1}g_{\mu\nu}T_\gamma \delta X^\gamma}\\
&=g_{\gamma\nu} {\delta X^\gamma}_{;\mu}+g_{\mu\gamma} {\delta X^\gamma}_{;\nu}
-\frac{1}{\mathbb{D}-1}
g_{\gamma\nu} T_{\mu}\delta X^{{\gamma}}
-\frac{1}{\mathbb{D}-1}
g_{\mu{\gamma}} T_{\nu}\delta X^{{\gamma}}
\end{align*}
\end{adjustwidth}
\begin{align*}
\left(\hat{\mathcal{L}}_{\delta X}\, g\right)^{\mu\nu}
&={g^{\mu\nu}}_{,\gamma} \delta X^\gamma-g^{\gamma\nu} {\delta X^\mu}_{,\gamma}-g^{\mu\gamma} {\delta X^\nu}_{,\gamma}\\
&=\left({g^{\mu\nu}}_{,\gamma}
+g^{\eta\nu}\Gamma^\mu_{\eta\gamma}
+g^{\mu\eta}\Gamma^\nu_{\eta\gamma}\right) \delta X^\gamma
-g^{\eta\nu}\Gamma^\mu_{\eta\gamma}\delta X^\gamma
-g^{\mu\eta}\Gamma^\nu_{\eta\gamma}\delta X^\gamma
-g^{\gamma\nu} {\delta X^\mu}_{,\gamma}-g^{\mu\gamma} {\delta X^\nu}_{,\gamma}\\
&={g^{\mu\nu}}_{;\gamma} \delta X^\gamma
-g^{\textcolor{red}{\gamma}\nu}\Gamma^\mu_{\textcolor{red}{\gamma}\textcolor{blue}{\eta}}\delta X^{\textcolor{blue}{\eta}}
-g^{\mu{\textcolor{red}{\gamma}}}\Gamma^\nu_{{\textcolor{red}{\gamma}}{\textcolor{blue}{\eta}}}\delta X^{\textcolor{blue}{\eta}}
-g^{\gamma\nu} {\delta X^\mu}_{,\gamma}-g^{\mu\gamma} {\delta X^\nu}_{,\gamma}\\
&={g^{\mu\nu}}_{;\gamma} \delta X^\gamma
-g^{\gamma\nu} {\delta X^\mu}_{;\gamma}-g^{\mu\gamma} {\delta X^\nu}_{;\gamma}\\
&=-g^{\gamma\nu} {\delta X^\mu}_{;\gamma}-g^{\mu\gamma} {\delta X^\nu}_{;\gamma}
\end{align*}
\begin{align*}
\frac{\partial\mathscr{L}}{\partial g^{\mu\nu}}\delta g^{\mu\nu}
&=\frac{\partial\mathscr{L}}{\partial g^{\mu\nu}}\left(\hat{\mathcal{L}}_{\delta X}\, g\right)^{\mu\nu}\\
&=\frac{1}{2}t_{\mu\nu}\left(
-g^{\gamma\nu} {\delta X^\mu}_{;\gamma}-g^{\mu\gamma} {\delta X^\nu}_{;\gamma}
\right)\\
&=-t_{\mu\nu}g^{\mu\gamma} {\delta X^\nu}_{;\gamma}\\
&=-t^\gamma_\nu\, {\delta X^\nu}_{;\gamma}\\
&=-T^\gamma_\nu\sqrt{-g}\, {\delta X^\nu}_{;\gamma}\\
&=-\left(T_\nu^\gamma{\delta X^\nu}\right)_{;\gamma}\sqrt{-g} \, \, +T_{\nu;\gamma}^{\gamma}\sqrt{-g}\,\,{\delta X^\nu}\\
&=-\left(T_\nu^\gamma{\delta X^\nu}\sqrt{-g}\right)_{,\gamma} \, \, +\left(T_{\nu}^{\gamma}\sqrt{-g}\right)_{;\gamma}\,\,{\delta X^\nu}\\
&=-\left(t_\nu^\gamma{\delta X^\nu}\right)_{,\gamma} \, \, +\left(t_{\nu}^{\gamma}\right)_{;\gamma}\,{\delta X^\nu}
\end{align*}
\begin{align*}
\frac{\partial\mathscr{L}}{\partial g^{\mu\nu}}\delta g^{\mu\nu}
&=\frac{\partial\mathscr{L}}{\partial g^{\mu\nu}}\left(\hat{\mathcal{L}}_{\delta X}\, g\right)^{\mu\nu}\\
&=\frac{\partial\mathscr{L}}{\partial g^{\mu\nu}}
\left(
{g^{\mu\nu}}_{,\gamma} \delta X^\gamma-g^{\gamma\nu} {\delta X^\mu}_{,\gamma}-g^{\mu\gamma} {\delta X^\nu}_{,\gamma}
\right)\\
&=
\frac{\partial\mathscr{L}}{\partial g^{\mu\nu}}{g^{\mu\nu}}_{,\gamma} \delta X^\gamma
-\frac{\partial\mathscr{L}}{\partial g^{\mu\nu}}g^{\gamma\nu} {\delta X^\mu}_{,\gamma}
-\frac{\partial\mathscr{L}}{\partial g^{\mu\nu}}g^{\mu\gamma} {\delta X^\nu}_{,\gamma}\\
&=
\frac{\partial\mathscr{L}}{\partial g^{\mu\nu}}{g^{\mu\nu}}_{,\gamma} \delta X^\gamma
-2\frac{\partial\mathscr{L}}{\partial g^{\mu\nu}}g^{\gamma\nu} {\delta X^\mu}_{,\gamma}
\end{align*}
\begin{adjustwidth}{-2.5cm}{-1cm}
\begin{align*}
\left(\hat{\mathcal{L}}_{\delta X}\, g\right)^{\mu\nu}
&={g^{\mu\nu}}_{,\gamma} \delta X^\gamma-g^{\gamma\nu} {\delta X^\mu}_{,\gamma}-g^{\mu\gamma} {\delta X^\nu}_{,\gamma}\\
&=\left({g^{\mu\nu}}_{,\gamma}
+g^{\eta\nu}\Gamma^\mu_{\eta\gamma}
+g^{\mu\eta}\Gamma^\nu_{\eta\gamma}
-\frac{2}{\mathbb{D}-1}g^{\mu\nu}T_\gamma\right) \delta X^\gamma
-g^{\eta\nu}\Gamma^\mu_{\eta\gamma}\delta X^\gamma
-g^{\mu\eta}\Gamma^\nu_{\eta\gamma}\delta X^\gamma
+\frac{2}{\mathbb{D}-1}g^{\mu\nu}T_\gamma \delta X^\gamma
-g^{\gamma\nu} {\delta X^\mu}_{,\gamma}-g^{\mu\gamma} {\delta X^\nu}_{,\gamma}\\
&=\underbracket{{g^{\mu\nu}}_{;\gamma}}_{=0} \delta X^\gamma
-g^{\textcolor{red}{\gamma}\nu}\Gamma^\mu_{\textcolor{red}{\gamma}\textcolor{blue}{\eta}}\delta X^{\textcolor{blue}{\eta}}
-g^{\mu{\textcolor{red}{\gamma}}}\Gamma^\nu_{{\textcolor{red}{\gamma}}{\textcolor{blue}{\eta}}}\delta X^{\textcolor{blue}{\eta}}
-g^{\gamma\nu} {\delta X^\mu}_{,\gamma}-g^{\mu\gamma} {\delta X^\nu}_{,\gamma}
+\frac{2}{\mathbb{D}-1}g^{\mu\nu}T_\gamma \delta X^\gamma\\
&=-g^{{\gamma}\nu}\Gamma^\mu_{{\eta}{\gamma}}\delta X^{{\eta}}
-g^{{\gamma}\nu}T^\mu_{{\gamma}{\eta}}\delta X^{{\eta}}
-g^{\mu{{\gamma}}}\Gamma^\nu_{{{\eta}{\gamma}}}\delta X^{{\eta}}
-g^{\mu{{\gamma}}}T^\nu_{{{\gamma}}{{\eta}}}\delta X^{{\eta}}
-g^{\gamma\nu} {\delta X^\mu}_{,\gamma}-g^{\mu\gamma} {\delta X^\nu}_{,\gamma}
+\frac{2}{\mathbb{D}-1}g^{\mu\nu}T_\gamma \delta X^\gamma\\
&=-g^{\gamma\nu} {\delta X^\mu}_{;\gamma}-g^{\mu\gamma} {\delta X^\nu}_{;\gamma}
-\frac{1}{\mathbb{D}-1}g^{\gamma\nu}
\left(
\delta^\mu_{\gamma} T_\eta
-\delta^\mu_{\eta} T_\gamma
\right)
\delta X^{{\eta}}
-\frac{1}{\mathbb{D}-1}g^{\mu\gamma}
\left(
\delta^\nu_{\gamma} T_\eta
-\delta^\nu_{\eta} T_\gamma
\right)
\delta X^{{\eta}}
+\frac{2}{\mathbb{D}-1}g^{\mu\nu}T_\gamma \delta X^\gamma
\\
&=-g^{\gamma\nu} {\delta X^\mu}_{;\gamma}-g^{\mu\gamma} {\delta X^\nu}_{;\gamma}
-\frac{1}{\mathbb{D}-1}
\left(
g^{\gamma\nu}\delta^\mu_{\gamma} T_\eta \delta X^{{\eta}}
-g^{\gamma\nu}\delta^\mu_{\eta} T_\gamma \delta X^{{\eta}}
\right)
-\frac{1}{\mathbb{D}-1}
\left(
g^{\mu\gamma}\delta^\nu_{\gamma} T_\eta \delta X^{{\eta}}
-g^{\mu\gamma}\delta^\nu_{\eta} T_\gamma \delta X^{{\eta}}
\right)
+\frac{2}{\mathbb{D}-1}g^{\mu\nu}T_\gamma \delta X^\gamma
\\
&=-g^{\gamma\nu} {\delta X^\mu}_{;\gamma}-g^{\mu\gamma} {\delta X^\nu}_{;\gamma}
-\frac{1}{\mathbb{D}-1}
\left(
\cancel{g^{\mu\nu} T_\eta \delta X^{{\eta}}}
-g^{\gamma\nu} T_\gamma \delta X^{{\mu}}
\right)
-\frac{1}{\mathbb{D}-1}
\left(
\cancel{g^{\mu\nu} T_\eta \delta X^{{\eta}}}
-g^{\mu\gamma} T_\gamma \delta X^{{\nu}}
\right)
+\cancel{\frac{2}{\mathbb{D}-1}g^{\mu\nu}T_\gamma \delta X^\gamma}
\\
&=-g^{\gamma\nu} {\delta X^\mu}_{;\gamma}-g^{\mu\gamma} {\delta X^\nu}_{;\gamma}
+\frac{1}{\mathbb{D}-1}
g^{\gamma\nu} T_\gamma \delta X^{{\mu}}
+\frac{1}{\mathbb{D}-1}
g^{\mu\gamma} T_\gamma \delta X^{{\nu}}
\end{align*}
\end{adjustwidth}
Projective invariance\\
https://arxiv.org/pdf/1807.10168\\
https://arxiv.org/pdf/1812.03420
\begin{align*}
\frac{\partial\mathscr{L}}{\partial g^{\mu\nu}}\delta g^{\mu\nu}
&=\frac{\partial\mathscr{L}}{\partial g^{\mu\nu}}\left(\hat{\mathcal{L}}_{\delta X}\, g\right)^{\mu\nu}\\
&=\frac{\partial\mathscr{L}}{\partial g^{\mu\nu}}\left(
-g^{\gamma\nu} {\delta X^\mu}_{;\gamma}-g^{\mu\gamma} {\delta X^\nu}_{;\gamma}
+\frac{1}{\mathbb{D}-1}
g^{\gamma\nu} T_\gamma \delta X^{{\mu}}
+\frac{1}{\mathbb{D}-1}
g^{\mu\gamma} T_\gamma \delta X^{{\nu}}
\right)\\
&=
-\frac{\partial\mathscr{L}}{\partial g^{\mu\nu}}g^{\gamma\nu} {\delta X^\mu}_{;\gamma}
-\frac{\partial\mathscr{L}}{\partial g^{\mu\nu}}g^{\mu\gamma} {\delta X^\nu}_{;\gamma}
+\frac{1}{\mathbb{D}-1}\frac{\partial\mathscr{L}}{\partial g^{\mu\nu}}
g^{\gamma\nu} T_\gamma \delta X^{{\mu}}
+\frac{1}{\mathbb{D}-1}\frac{\partial\mathscr{L}}{\partial g^{\mu\nu}}
g^{\mu\gamma} T_\gamma \delta X^{{\nu}}
\\
&=
-2\frac{\partial\mathscr{L}}{\partial g^{\mu\nu}}g^{\gamma\nu} {\delta X^\mu}_{;\gamma}
+\frac{2}{\mathbb{D}-1}\frac{\partial\mathscr{L}}{\partial g^{\mu\nu}}
g^{\gamma\nu} T_\gamma \delta X^{{\mu}}
\end{align*}
\noindent Using
\begin{align*}
\left(t_{GR}\right)^\gamma_{\varepsilon,\gamma}
=\left\{
\left[\frac{\partial \mathscr{L}_{GR}}{\partial \Gamma^\alpha_{\nu\mu,\gamma}}\right]_{,\gamma}-\frac{\partial \mathscr{L}_{GR}}{\partial \Gamma^\alpha_{\nu\mu}} \right\}
R^\alpha_{\nu\varepsilon\mu}
+\left(t_{GR}\right)^\eta_\nu \,
\Gamma^\nu_{\eta\varepsilon}
&\leftrightarrow
\left(t_{GR}\right)^\gamma_{\varepsilon;\gamma}
=\left\{
EoM_{\delta\Gamma^\alpha_{\nu\mu}}\right\}
R^\alpha_{\nu\varepsilon\mu} \\
\left(t_{YM}\right)^\mu_{\gamma,\mu}
=\left\{ \left[ \frac{\partial \mathscr{L}_{YM}}{\partial(\partial_\mu B^a_\nu)} \right]_{,\mu}
-\frac{\partial \mathscr{L}_{YM}}{\partial( B^a_\nu)} \right\}G^a_{\gamma\nu}
+ \left( t_{YM}\right)^\eta_\mu \Gamma^\mu_{\eta\gamma}
&\leftrightarrow
\left(t_{YM}\right)^\mu_{\gamma;\mu} =\left\{ EoM_{\delta B^a_\nu} \right\}G^a_{\gamma\nu}
\end{align*}
\noindent We have
\begin{align*}
\frac{\partial\left({\mathscr{L}_{GR}}+{\mathscr{L}_{YM}}\right)}{\partial g_{\mu\nu}}\delta g_{\mu\nu}
&=\left\{\left[{\left(t_{GR}\right)^\mu}_{\gamma}+{\left(t_{YM}\right)^\mu}_{\gamma}\right]{\delta X^\gamma}\right\}_{,\mu} \, \,
-\left[{\left(t_{GR}\right)^\mu}_{\gamma}+{\left(t_{YM}\right)^\mu}_{\gamma}\right]_{;\mu}{\delta X^\gamma}\\
&=\left\{\left[{\left(t_{GR}\right)^\mu}_{\gamma}+{\left(t_{YM}\right)^\mu}_{\gamma}\right]{\delta X^\gamma}\right\}_{,\mu}
-\left\{
EoM_{\delta\Gamma^\alpha_{\nu\mu}}\right\}
R^\alpha_{\nu\varepsilon\mu}{\delta X^\gamma}
-\left\{ EoM_{\delta B^a_\nu} \right\}G^a_{\gamma\nu}{\delta X^\gamma}
\end{align*}
\noindent Move to left
\begin{align*}
\frac{\partial\left({\mathscr{L}_{GR}}+{\mathscr{L}_{YM}}\right)}{\partial g_{\mu\nu}}\delta g_{\mu\nu}
+\left\{
EoM_{\delta\Gamma^\alpha_{\nu\mu}}\right\}
R^\alpha_{\nu\varepsilon\mu}{\delta X^\gamma}
+\left\{ EoM_{\delta B^a_\nu} \right\}G^a_{\gamma\nu}{\delta X^\gamma}
-\left\{\left[{\left(t_{GR}\right)^\mu}_{\gamma}+{\left(t_{YM}\right)^\mu}_{\gamma}\right]{\delta X^\gamma}\right\}_{,\mu}
&=0
\end{align*}
\noindent Compare with
\begin{align*}
\Delta S &=
\int \frac{\delta \mathscr{L}_{EM}}{\delta g^{\mu\nu}}\delta g^{\mu\nu} d^4x + \int \left[\text{EoM of }\delta A_\nu \right]\delta A_\nu d^4x
- \int \partial_\mu \left[ \left( \frac{\partial \mathscr{L}_{EM}}{\partial(\partial_\mu A_\nu)} F_{\gamma\nu} - \delta^\mu_\gamma \mathscr{L}_{EM} \right) \delta x^\gamma \right]d^4x
\\
&=
\int \frac{\delta \mathscr{L}_{EM}}{\delta g^{\mu\nu}}\left(\hat{\mathcal{L}}_{\delta X}\, g\right)^{\mu\nu}d^4x + \int \left[\text{EoM of }\delta A_\nu \right]\delta A_\nu d^4x
- \int \partial_\mu \left[ \left( t_{EM} \right)^\mu_\gamma \delta X^\gamma \right]d^4x
\\
&=
\int -2\frac{\delta \mathscr{L}_{EM}}{\delta g^{\mu\nu}}g^{\mu\gamma} {\delta X^\nu}_{;\gamma}d^4x
- \int \partial_\mu \left[ \sqrt{-g}\, \left( T_{EM} \right)^\mu_\nu \delta X^\nu \right]d^4x
\\
&=
\int -2\frac{\delta \mathscr{L}_{EM}}{\delta g^{\mu\nu}}g^{\mu\gamma} {\delta X^\nu}_{;\gamma}d^4x
- \int \sqrt{-g}\,\nabla_\mu \left[ \left( T_{EM} \right)^\mu_\nu \delta X^\nu \right]d^4x
\\
&=
\int -2\frac{\delta \mathscr{L}_{EM}}{\delta g^{\mu\nu}}g^{\mu\gamma} {\delta X^\nu}_{;\gamma}d^4x
- \int \sqrt{-g}\, \left[\nabla_\mu \left( T_{EM} \right)^\mu_\nu \right] \delta X^\nu d^4x
- \int \sqrt{-g}\,\left( T_{EM} \right)^\mu_\nu \left(\nabla_\mu {\delta X^\nu}\right) d^4x
\\
&=
\int \left[-2\frac{\delta \mathscr{L}_{EM}}{\delta g^{\mu\nu}}g^{\mu\gamma}\right] {\delta X^\nu}_{;\gamma}d^4x
- \int \sqrt{-g}\, \left[\nabla_\mu \left( T_{EM} \right)^\mu_\nu \right] \delta X^\nu d^4x
- \int \left[ \sqrt{-g}\, \left( T_{EM} \right)^\gamma_\nu \right] {\delta X^\nu}_{;\gamma} d^4x
\\
&=
\int \left[-2\frac{\delta \mathscr{L}_{EM}}{\delta g^{\mu\nu}}g^{\mu\gamma}
-\sqrt{-g}\, \left( T_{EM} \right)^\gamma_\nu
\right] {\delta X^\nu}_{;\gamma}d^4x
- \int \sqrt{-g}\, \left[\nabla_\mu \left( T_{EM} \right)^\mu_\nu \right] \delta X^\nu d^4x
\end{align*}
\begin{align*}
-2\frac{\delta \mathscr{L}_{EM}}{\delta g^{\mu\nu}}g^{\mu\gamma}
&=\sqrt{-g}\, \left( T_{EM} \right)^\gamma_\nu\\
\to
\frac{1}{\sqrt{-g}}\frac{\delta \mathscr{L}_{EM}}{\delta g^{\mu\nu}}&=-\frac{1}{2} g_{\mu\gamma} \left( T_{EM} \right)^\gamma_\nu\\
\end{align*}
\begin{adjustwidth}{-2.5cm}{-1cm}
\begin{align*}
\Delta S &=
\int \frac{\delta \mathscr{L}_{EM}}{\delta g^{\mu\nu}}\delta g^{\mu\nu} d^4x + \int \left[\text{EoM of }\delta A_\nu \right]\delta A_\nu d^4x
- \int \partial_\mu \left[ \left( \frac{\partial \mathscr{L}_{EM}}{\partial(\partial_\mu A_\nu)} F_{\gamma\nu} - \delta^\mu_\gamma \mathscr{L}_{EM} \right) \delta x^\gamma \right]d^4x
\\
&=
\int \frac{\delta \mathscr{L}_{EM}}{\delta g^{\mu\nu}}\left(\hat{\mathcal{L}}_{\delta X}\, g\right)^{\mu\nu}d^4x + \int \left[\text{EoM of }\delta A_\nu \right]\delta A_\nu d^4x
- \int \partial_\mu \left[ \left( t_{EM} \right)^\mu_\gamma \delta X^\gamma \right]d^4x
\\
&=
\int
\left[
\frac{\partial\mathscr{L}}{\partial g^{\mu\nu}}{g^{\mu\nu}}_{,\gamma} \delta X^\gamma
-2\frac{\partial\mathscr{L}}{\partial g^{\mu\nu}}g^{\gamma\nu} {\delta X^\mu}_{,\gamma}
\right]d^4x
- \int \partial_\mu \left[ \sqrt{-g}\, \left( T_{EM} \right)^\mu_\nu \delta X^\nu \right]d^4x
\\
&=
\int
\left[
\frac{\partial\mathscr{L}}{\partial g^{\mu\nu}}{g^{\mu\nu}}_{,\gamma} \delta X^\gamma
-2\frac{\partial\mathscr{L}}{\partial g^{\mu\nu}}g^{\gamma\nu} {\delta X^\mu}_{,\gamma}
\right]d^4x
- \int
\left[
\sqrt{-g}_{\, ,\mu} \left( T_{EM} \right)^\mu_\nu \delta X^\nu
+\sqrt{-g}\, \left( T_{EM} \right)^\mu_{\nu,\mu} \delta X^\nu
+\sqrt{-g}\, \left( T_{EM} \right)^\mu_\nu {\delta X^\nu}_{,\mu}
\right]d^4x
\\
&=
\int
\left[
\frac{\partial\mathscr{L}}{\partial g^{\mu\gamma}}{g^{\mu\gamma}}_{,\nu} \delta X^\nu
-2\frac{\partial\mathscr{L}}{\partial g^{\mu\nu}}g^{\gamma\nu} {\delta X^\mu}_{,\gamma}
-\sqrt{-g}_{\, ,\mu} \left( T_{EM} \right)^\mu_\nu \delta X^\nu
-\sqrt{-g}\, \left( T_{EM} \right)^\mu_{\nu,\mu} \delta X^\nu
-\sqrt{-g}\, \left( T_{EM} \right)^\gamma_\mu {\delta X^\mu}_{,\gamma}
\right]d^4x
\\
&=
\int
\left[
-2\frac{\partial\mathscr{L}}{\partial g^{\mu\nu}}g^{\gamma\nu}
-\sqrt{-g}\, \left( T_{EM} \right)^\gamma_\mu
\right]{\delta X^\mu}_{,\gamma}d^4x
+ \int
\left[
\frac{\partial\mathscr{L}}{\partial g^{\mu\gamma}}{g^{\mu\gamma}}_{,\nu}
-\sqrt{-g}_{\, ,\mu} \left( T_{EM} \right)^\mu_\nu
\right] \delta X^\nu d^4x
- \int
\sqrt{-g}\, \left( T_{EM} \right)^\mu_{\nu,\mu}
\delta X^\nu d^4x
\\
&=
\int
\left[
-2\frac{\partial\mathscr{L}}{\partial g^{\mu\nu}}g^{\gamma\nu}
-\sqrt{-g}\, \left( T_{EM} \right)^\gamma_\mu
\right]{\delta X^\mu}_{,\gamma}d^4x
+ \int
\left[
\frac{\partial\mathscr{L}}{\partial g^{\mu\gamma}}{g^{\mu\gamma}}_{,\nu}
+\frac{1}{2}\sqrt{-g}\, g_{\psi\phi} {g^{\psi\phi}}_{ ,\mu} \left( T_{EM} \right)^\mu_\nu
\right] \delta X^\nu d^4x
- \int
\sqrt{-g}\, \left( T_{EM} \right)^\mu_{\nu,\mu}
\delta X^\nu d^4x
\\
&=
\int
\left[
-2\frac{\partial\mathscr{L}}{\partial g^{\mu\nu}}g^{\gamma\nu}
-\sqrt{-g}\, \left( T_{EM} \right)^\gamma_\mu
\right]{\delta X^\mu}_{,\gamma}d^4x
+ \int
\left[
\frac{\partial\mathscr{L}}{\partial g^{\psi\phi}}{g^{\psi\phi}}_{,\mu} \delta X^\mu
+\frac{1}{2}\sqrt{-g}\, g_{\psi\phi} {g^{\psi\phi}}_{ ,\mu} \left( T_{EM} \right)^\mu_\nu \delta X^\nu
\right] d^4x
- \int
\sqrt{-g}\, \left( T_{EM} \right)^\mu_{\nu,\mu}
\delta X^\nu d^4x
\\
&=
\int
\left[
-2\frac{\partial\mathscr{L}}{\partial g^{\mu\nu}}g^{\gamma\nu}
-\sqrt{-g}\, \left( T_{EM} \right)^\gamma_\mu
\right]{\delta X^\mu}_{,\gamma}d^4x
+ \int
\left[
\frac{\partial\mathscr{L}}{\partial g^{\psi\phi}} \delta X^\mu
+\frac{1}{2}\sqrt{-g}\, g_{\psi\phi} \left( T_{EM} \right)^\mu_\nu \delta X^\nu
\right] {g^{\psi\phi}}_{ ,\mu} d^4x
- \int
\sqrt{-g}\, \left( T_{EM} \right)^\mu_{\nu,\mu}
\delta X^\nu d^4x
\\
&=
\int
\left[
-2\frac{\partial\mathscr{L}}{\partial g^{\mu\nu}}g^{\gamma\nu}
-\sqrt{-g}\, \left( T_{EM} \right)^\gamma_\mu
\right]{\delta X^\mu}_{,\gamma}d^4x
+ \int
\left[
\frac{\partial\mathscr{L}}{\partial g^{\psi\phi}}
\delta^\mu_\nu
+\frac{1}{2}\sqrt{-g}\, g_{\psi\phi} \left( T_{EM} \right)^\mu_\nu
\right]
\delta X^\nu {g^{\psi\phi}}_{ ,\mu} d^4x
- \int
\sqrt{-g}\, \left( T_{EM} \right)^\mu_{\nu,\mu}
\delta X^\nu d^4x
\\
\end{align*}
\end{adjustwidth}
\begin{align*}
\Delta S &=
\int \frac{\delta \mathscr{L}_{EM}}{\delta g^{\mu\nu}}\delta g^{\mu\nu} d^4x + \int \left[\text{EoM of }\delta A_\nu \right]\delta A_\nu d^4x
- \int \partial_\mu \left[ \left( \frac{\partial \mathscr{L}_{EM}}{\partial(\partial_\mu A_\nu)} F_{\gamma\nu} - \delta^\mu_\gamma \mathscr{L}_{EM} \right) \delta x^\gamma \right]d^4x
\\
&=
\int \frac{\delta \mathscr{L}_{EM}}{\delta g^{\mu\nu}}\left(\hat{\mathcal{L}}_{\delta X}\, g\right)^{\mu\nu}d^4x + \int \left[\text{EoM of }\delta A_\nu \right]\delta A_\nu d^4x
- \int \partial_\mu \left[ \left( t_{EM} \right)^\mu_\gamma \delta X^\gamma \right]d^4x
\\
&=
\int -2\frac{\delta \mathscr{L}_{EM}}{\delta g^{\mu\nu}}g^{\mu\gamma} {\delta X^\nu}_{;\gamma}d^4x
- \int \partial_\mu \left[ \sqrt{-g}\, \left( T_{EM} \right)^\mu_\nu \delta X^\nu \right]d^4x
\\
&=
\int -2\frac{\delta \mathscr{L}_{EM}}{\delta g^{\mu\nu}}g^{\mu\gamma} {\delta X^\nu}_{;\gamma}d^4x
- \int \sqrt{-g}\,\nabla_\mu \left[ \left( T_{EM} \right)^\mu_\nu \delta X^\nu \right]d^4x
\\
&=
\int -2\frac{\delta \mathscr{L}_{EM}}{\delta g^{\mu\nu}}g^{\mu\gamma} {\delta X^\nu}_{;\gamma}d^4x
- \int \sqrt{-g}\, \left[\nabla_\mu \left( T_{EM} \right)^\mu_\nu \right] \delta X^\nu d^4x
- \int \sqrt{-g}\,\left( T_{EM} \right)^\mu_\nu \left(\nabla_\mu {\delta X^\nu}\right) d^4x
\\
&=
\int \left[-2\frac{\delta \mathscr{L}_{EM}}{\delta g^{\mu\nu}}g^{\mu\gamma}\right] {\delta X^\nu}_{;\gamma}d^4x
- \int \sqrt{-g}\, \left[\nabla_\mu \left( T_{EM} \right)^\mu_\nu \right] \delta X^\nu d^4x
- \int \left[ \sqrt{-g}\, \left( T_{EM} \right)^\gamma_\nu \right] {\delta X^\nu}_{;\gamma} d^4x
\\
&=
\int \left[-2\frac{\delta \mathscr{L}_{EM}}{\delta g^{\mu\nu}}g^{\mu\gamma}
-\sqrt{-g}\, \left( T_{EM} \right)^\gamma_\nu
\right] {\delta X^\nu}_{;\gamma}d^4x
- \int \sqrt{-g}\, \left[\nabla_\mu \left( T_{EM} \right)^\mu_\nu \right] \delta X^\nu d^4x
\end{align*}
\begin{align*}
-2\frac{\delta \mathscr{L}_{EM}}{\delta g^{\mu\nu}}g^{\mu\gamma}
&=\sqrt{-g}\, \left( T_{EM} \right)^\gamma_\nu\\
\to
\frac{1}{\sqrt{-g}}\frac{\delta \mathscr{L}_{EM}}{\delta g^{\mu\nu}}&=-\frac{1}{2} g_{\mu\gamma} \left( T_{EM} \right)^\gamma_\nu\\
\end{align*}
\begin{adjustwidth}{-2.5cm}{-1cm}
\begin{align*}
\Delta S &=
\int \frac{\delta \mathscr{L}_{EM}}{\delta g^{\mu\nu}}\delta g^{\mu\nu} d^4x + \int \left[\text{EoM of }\delta A_\nu \right]\delta A_\nu d^4x
- \int \partial_\mu \left[ \left( \frac{\partial \mathscr{L}_{EM}}{\partial(\partial_\mu A_\nu)} F_{\gamma\nu} - \delta^\mu_\gamma \mathscr{L}_{EM} \right) \delta x^\gamma \right]d^4x
\\
&=
\int \frac{\delta \mathscr{L}_{EM}}{\delta g^{\mu\nu}}\left(\hat{\mathcal{L}}_{\delta X}\, g\right)^{\mu\nu}d^4x + \int \left[\text{EoM of }\delta A_\nu \right]\delta A_\nu d^4x
- \int \partial_\mu \left[ \left( t_{EM} \right)^\mu_\gamma \delta X^\gamma \right]d^4x
\\
&=
\int
\left[
\frac{\partial \mathscr{L}_{EM}}{\partial g^{\mu\nu}}{g^{\mu\nu}}_{,\gamma} \delta X^\gamma
-2\frac{\partial \mathscr{L}_{EM}}{\partial g^{\mu\nu}}g^{\gamma\nu} {\delta X^\mu}_{,\gamma}
\right]d^4x
- \int \left( t_{EM} \right)^\mu_{\gamma,\mu} \delta X^\gamma d^4x
- \int \left( t_{EM} \right)^\mu_\gamma {\delta X^\gamma}_{,\mu} d^4x
\\
&=
\int
\left[
\cancel{
\frac{\partial \mathscr{L}_{EM}}{\partial g^{\mu\nu}}{g^{\mu\nu}}_{,\gamma} \delta X^\gamma
}
-2\frac{\partial \mathscr{L}_{EM}}{\partial g^{\mu\nu}}g^{\gamma\nu} {\delta X^\mu}_{,\gamma}
\right]d^4x
- \int
\cancel{\frac{\partial \mathscr{L}_{EM}}{\partial g^{\mu\nu}}{g^{\mu\nu}}_{,\gamma} \delta X^\gamma
} d^4x
- \int \left( t_{EM} \right)^\gamma_\mu {\delta X^\mu}_{,\gamma} d^4x
\\
&=
\int
\left[
-2\frac{\partial \mathscr{L}_{EM}}{\partial g^{\mu\nu}}g^{\gamma\nu}
+ \left( t_{EM} \right)^\gamma_\mu
\right]{\delta X^\mu}_{,\gamma} d^4x
\end{align*}
\end{adjustwidth}
\begin{adjustwidth}{-2.5cm}{-1cm}
\begin{align*}
\Delta S &=
\int \frac{\delta \mathscr{L}_{EM}}{\delta g^{\mu\nu}}\delta g^{\mu\nu} d^4x + \int \left[\text{EoM of }\delta A_\nu \right]\delta A_\nu d^4x
- \int \partial_\mu \left[ \left( \frac{\partial \mathscr{L}_{EM}}{\partial(\partial_\mu A_\nu)} F_{\gamma\nu} - \delta^\mu_\gamma \mathscr{L}_{EM} \right) \delta x^\gamma \right]d^4x
\\
&=
\int \frac{\delta \mathscr{L}_{EM}}{\delta g^{\mu\nu}}\left(\hat{\mathcal{L}}_{\delta X}\, g\right)^{\mu\nu}d^4x + \int \left[\text{EoM of }\delta A_\nu \right]\delta A_\nu d^4x
- \int \partial_\mu \left[ \left( t_{EM} \right)^\mu_\gamma \delta X^\gamma \right]d^4x
\\
&=
\int
\left[
\frac{\partial\mathscr{L}}{\partial g^{\mu\nu}}{g^{\mu\nu}}_{,\gamma} \delta X^\gamma
-2\frac{\partial\mathscr{L}}{\partial g^{\mu\nu}}g^{\gamma\nu} {\delta X^\mu}_{,\gamma}
\right]d^4x
- \int \partial_\mu \left[ \sqrt{-g}\, \left( T_{EM} \right)^\mu_\nu \delta X^\nu \right]d^4x
\\
&=
\int
\left[
\frac{\partial\mathscr{L}}{\partial g^{\mu\nu}}{g^{\mu\nu}}_{,\gamma} \delta X^\gamma
-2\frac{\partial\mathscr{L}}{\partial g^{\mu\nu}}g^{\gamma\nu} {\delta X^\mu}_{,\gamma}
\right]d^4x
- \int
\left\{
\left[
\sqrt{-g} \left( T_{EM} \right)^\mu_\nu
\right]_{,\mu} \delta X^\nu
+\left[
\sqrt{-g}\, \left( T_{EM} \right)^\mu_\nu {\delta X^\nu}_{,\mu}
\right]
\right\}d^4x
\\
&=
\int
\left[
\frac{\partial\mathscr{L}}{\partial g^{\mu\nu}}{g^{\mu\nu}}_{,\gamma} \delta X^\gamma
-2\frac{\partial\mathscr{L}}{\partial g^{\mu\nu}}g^{\gamma\nu} {\delta X^\mu}_{,\gamma}
-\left[
\sqrt{-g} \left( T_{EM} \right)^\mu_\nu
\right]_{,\mu} \delta X^\nu
-\sqrt{-g}\, \left( T_{EM} \right)^\mu_\nu {\delta X^\nu}_{,\mu}
\right]d^4x
\\
&=
\int
\left[
-2\frac{\partial\mathscr{L}}{\partial g^{\mu\nu}}g^{\gamma\nu} {\delta X^\mu}_{,\gamma}
-\sqrt{-g}\, \left( T_{EM} \right)^\gamma_\mu {\delta X^\mu}_{,\gamma}
+\frac{\partial\mathscr{L}}{\partial g^{\mu\nu}}{g^{\mu\nu}}_{,\gamma} \delta X^\gamma
-\left[
\sqrt{-g} \left( T_{EM} \right)^\mu_\nu
\right]_{,\mu} \delta X^\nu
\right]d^4x
\\
&=
\int
\left[
-2\frac{\partial\mathscr{L}}{\partial g^{\mu\nu}}g^{\gamma\nu}
-\sqrt{-g}\, \left( T_{EM} \right)^\gamma_\mu
\right] {\delta X^\mu}_{,\gamma} d^4x
+
\int
\frac{\partial\mathscr{L}}{\partial g^{\mu\nu}}{g^{\mu\nu}}_{,\gamma} \delta X^\gamma
d^4x
-
\int
\left[
\sqrt{-g} \left( T_{EM} \right)^\mu_\nu
\right]_{,\mu} \delta X^\nu
d^4x
\\
&=
\int
-2\left[
\frac{\partial\mathscr{L}}{\partial g^{\mu\nu}}
+\frac{1}{2}\sqrt{-g}\, \left( T_{EM} \right)^\sigma_\mu
g_{\sigma\nu}
\right]g^{\gamma\nu} {\delta X^\mu}_{,\gamma} d^4x
+
\int
\frac{\partial\mathscr{L}}{\partial g^{\mu\nu}}{g^{\mu\nu}}_{,\gamma} \delta X^\gamma
d^4x
-
\int
\left[
\sqrt{-g} \left( T_{EM} \right)^\mu_\nu
\right]_{,\mu} \delta X^\nu
d^4x
\\
&=
\int
-2\left[
\frac{\partial\mathscr{L}}{\partial g^{\mu\nu}}
+\frac{1}{2}\sqrt{-g}\, \left( T_{EM} \right)^\sigma_\mu
g_{\sigma\nu}
\right]g^{\gamma\nu} {\delta X^\mu}_{,\gamma} d^4x
+
\int
\left[
\frac{\partial\mathscr{L}}{\partial g^{\mu\nu}}
\textcolor{red}{+\frac{1}{2}\sqrt{-g}\, \left( T_{EM} \right)^\sigma_\mu
g_{\sigma\nu}
-\frac{1}{2}\sqrt{-g}\, \left( T_{EM} \right)^\sigma_\mu
g_{\sigma\nu}}
\right]{g^{\mu\nu}}_{,\gamma} \delta X^\gamma
d^4x\\ &\qquad\qquad
-
\int
\left[
\sqrt{-g} \left( T_{EM} \right)^\mu_\nu
\right]_{,\mu} \delta X^\nu
d^4x
\\
&=
\int
-2\left[
\frac{\partial\mathscr{L}}{\partial g^{\mu\nu}}
+\frac{1}{2}\sqrt{-g}\, \left( T_{EM} \right)^\sigma_\mu
g_{\sigma\nu}
\right]g^{\gamma\nu} {\delta X^\mu}_{,\gamma} d^4x
+
\int
\left[
\frac{\partial\mathscr{L}}{\partial g^{\mu\nu}}
+\frac{1}{2}\sqrt{-g}\, \left( T_{EM} \right)^\sigma_\mu
g_{\sigma\nu}
\right]{g^{\mu\nu}}_{,\gamma} \delta X^\gamma
d^4x\\ &\qquad\qquad
-
\int
\frac{1}{2}\sqrt{-g}\, \left( T_{EM} \right)^\sigma_\mu
g_{\sigma\nu}
{g^{\mu\nu}}_{,\gamma} \delta X^\gamma
d^4x
-
\int
\left[
\sqrt{-g} \left( T_{EM} \right)^\mu_\nu
\right]_{,\mu} \delta X^\nu
d^4x
\\
&=
\int
-2\left[
\frac{\partial\mathscr{L}}{\partial g^{\mu\nu}}
+\frac{1}{2}\sqrt{-g}\, \left( T_{EM} \right)^\sigma_\mu
g_{\sigma\nu}
\right]g^{\gamma\nu} {\delta X^\mu}_{,\gamma} d^4x
+
\int
\left[
\frac{\partial\mathscr{L}}{\partial g^{\mu\nu}}
+\frac{1}{2}\sqrt{-g}\, \left( T_{EM} \right)^\sigma_\mu
g_{\sigma\nu}
\right]{g^{\mu\nu}}_{,\gamma} \delta X^\gamma
d^4x\\ &\qquad\qquad
-
\int
\frac{1}{2}\sqrt{-g}\, \left( T_{EM} \right)^\sigma_\mu
g_{\sigma\nu}
\left(
-g^{\xi\nu}\Gamma^\mu_{\xi\gamma}
-g^{\mu\xi}\Gamma^\nu_{\xi\gamma}
+\frac{2}{\mathbb{D}-1}g^{\mu\nu}T_\gamma
\right)
\delta X^\gamma
d^4x
-
\int
\left[
\sqrt{-g} \left( T_{EM} \right)^\mu_\nu
\right]_{,\mu} \delta X^\nu
d^4x
\\
&=
\int
-2\left[
\frac{\partial\mathscr{L}}{\partial g^{\mu\nu}}
+\frac{1}{2}\sqrt{-g}\, \left( T_{EM} \right)^\sigma_\mu
g_{\sigma\nu}
\right]g^{\gamma\nu} {\delta X^\mu}_{,\gamma} d^4x
+
\int
\left[
\frac{\partial\mathscr{L}}{\partial g^{\mu\nu}}
+\frac{1}{2}\sqrt{-g}\, \left( T_{EM} \right)^\sigma_\mu
g_{\sigma\nu}
\right]{g^{\mu\nu}}_{,\gamma} \delta X^\gamma
d^4x\\ &\qquad\qquad
-
\int
\frac{1}{2}\sqrt{-g}\, \left( T_{EM} \right)^\sigma_\mu
\left(
-g_{\sigma\nu}g^{\xi\nu}\Gamma^\mu_{\xi\gamma}
-g_{\sigma\nu}g^{\mu\xi}\Gamma^\nu_{\xi\gamma}
+\frac{2}{\mathbb{D}-1}g_{\sigma\nu}g^{\mu\nu}T_\gamma
\right)
\delta X^\gamma
d^4x
-
\int
\left[
\sqrt{-g} \left( T_{EM} \right)^\mu_\nu
\right]_{,\mu} \delta X^\nu
d^4x
\\
&=
\int
-2\left[
\frac{\partial\mathscr{L}}{\partial g^{\mu\nu}}
+\frac{1}{2}\sqrt{-g}\, \left( T_{EM} \right)^\sigma_\mu
g_{\sigma\nu}
\right]g^{\gamma\nu} {\delta X^\mu}_{,\gamma} d^4x
+
\int
\left[
\frac{\partial\mathscr{L}}{\partial g^{\mu\nu}}
+\frac{1}{2}\sqrt{-g}\, \left( T_{EM} \right)^\sigma_\mu
g_{\sigma\nu}
\right]{g^{\mu\nu}}_{,\gamma} \delta X^\gamma
d^4x\\ &\qquad\qquad
-
\int
\frac{1}{2}\sqrt{-g}\, \left( T_{EM} \right)^\sigma_\mu
\left(
-\Gamma^\mu_{\sigma\gamma}
-g_{\sigma\nu}g^{\mu\xi}\Gamma^\nu_{\xi\gamma}
+\frac{2}{\mathbb{D}-1}\delta_{\sigma}^{\mu}T_\gamma
\right)
\delta X^\gamma
d^4x
-
\int
\left[
\sqrt{-g} \left( T_{EM} \right)^\mu_\nu
\right]_{,\mu} \delta X^\nu
d^4x
\\
\end{align*}
\end{adjustwidth}
\begin{adjustwidth}{-2.5cm}{-1cm}
\begin{align*}
&\left[
\frac{\partial\mathscr{L}}{\partial g^{\psi\phi}} \delta X^\mu
+\frac{1}{2}\sqrt{-g}\, g_{\psi\phi} \left( T_{EM} \right)^\mu_\nu \delta X^\nu
\right] {g^{\psi\phi}}_{ ,\mu} \\
&=\left[
\frac{\partial\mathscr{L}}{\partial g^{\psi\phi}} \delta X^\mu
+\frac{1}{2}\sqrt{-g}\, g_{\psi\phi} \left( T_{EM} \right)^\mu_\nu \delta X^\nu
\right]
\left(
-g^{\sigma\phi}\Gamma^\psi_{\sigma\mu}
-g^{\psi\sigma}\Gamma^\phi_{\sigma\mu}
+\frac{2}{\mathbb{D}-1}g^{\psi\phi}T_\mu
\right)\\
&=
\frac{\partial\mathscr{L}}{\partial g^{\psi\phi}} \delta X^\mu\left(
-g^{\sigma\phi}\Gamma^\psi_{\sigma\mu}
-g^{\psi\sigma}\Gamma^\phi_{\sigma\mu}
+\frac{2}{\mathbb{D}-1}g^{\psi\phi}T_\mu
\right)
+\frac{1}{2}\sqrt{-g}\, g_{\psi\phi} \left( T_{EM} \right)^\mu_\nu \delta X^\nu\left(
-g^{\sigma\phi}\Gamma^\psi_{\sigma\mu}
-g^{\psi\sigma}\Gamma^\phi_{\sigma\mu}
+\frac{2}{\mathbb{D}-1}g^{\psi\phi}T_\mu
\right)
\\
&=
\delta X^\mu\left(
-2\frac{\partial\mathscr{L}}{\partial g^{\psi\phi}}g^{\sigma\phi}\Gamma^\psi_{\sigma\mu}
+\frac{2}{\mathbb{D}-1}\frac{\partial\mathscr{L}}{\partial g^{\psi\phi}}g^{\psi\phi}T_\mu
\right)
+\frac{1}{2}\sqrt{-g}\, \left( T_{EM} \right)^\mu_\nu \delta X^\nu\left(
- g_{\psi\phi}g^{\sigma\phi}\Gamma^\psi_{\sigma\mu}
- g_{\psi\phi}g^{\psi\sigma}\Gamma^\phi_{\sigma\mu}
+\frac{2}{\mathbb{D}-1}g_{\psi\phi}g^{\sigma\phi}T_\mu
\right)
\\
&=
\delta X^\nu\left(
-2\frac{\partial\mathscr{L}}{\partial g^{\psi\phi}}g^{\sigma\phi}\Gamma^\psi_{\sigma\nu}
+\frac{2}{\mathbb{D}-1}\frac{\partial\mathscr{L}}{\partial g^{\psi\phi}}g^{\psi\phi}T_\nu
\right)
+\frac{1}{2}\sqrt{-g}\, \left( T_{EM} \right)^\mu_\nu \delta X^\nu\left(
-2 g_{\psi\phi}g^{\sigma\phi}\Gamma^\psi_{\sigma\mu}
+\frac{2}{\mathbb{D}-1} g_{\psi\phi}g^{\psi\phi} T_\mu
\right)
\\
\end{align*}
\end{adjustwidth}
\begin{align*}
&\delta \mathscr{L}=\frac{\delta \mathscr{L}}{\delta g_{\mu\nu}}\hat{\mathcal{L}}_X g_{\mu\nu}+\cancelto{0}{\left[\text{EoM of }\delta A_\nu \right] }{\mathcal{L}}_X A_\nu
-\partial_\mu\left( t^\mu_\gamma \delta X^\gamma \right)=0\\
&\to
\delta \mathscr{L}=\frac{\delta \mathscr{L}}{\delta g_{\mu\nu}}\left(g_{\gamma\nu} {\delta X^\gamma}_{;\mu}+g_{\mu\gamma} {\delta X^\gamma}_{;\nu}\right)
-\partial_\mu\left( t^\mu_\gamma \delta X^\gamma \right)=0
\\
&\to
\delta \mathscr{L}=2\frac{\delta \mathscr{L}}{\delta g_{\mu\nu}}g_{\gamma\nu} {\delta X^\gamma}_{;\mu}
-\partial_\mu\left( t^\mu_\gamma \delta X^\gamma \right)=0
\\
&\to
\delta \mathscr{L}=\partial_\mu\left( 2\frac{\delta \mathscr{L}}{\delta g_{\mu\nu}}g_{\gamma\nu} {\delta X^\gamma}\right)_{,\mu}
-\partial_\mu\left( t^\mu_\gamma \delta X^\gamma \right)=0
\\
&\to
2\frac{\delta \mathscr{L}}{\delta g_{\mu\nu}}g_{\gamma\nu}=t^\mu_\gamma
\end{align*}
\section{Relation between EoM and Conservation law}
\subsection{EM conservation law and EoM}
\begin{align*}
\left(t_{EM}\right)^\mu_{\gamma,\mu}
&=\left[ \frac{\partial \mathscr{L}_{EM}}{\partial(\partial_\mu A_\nu)} F_{\gamma\nu} - \delta^\mu_\gamma \mathscr{L}_{EM} \right]_{,\mu}\\
&=\left[ \frac{\partial \mathscr{L}_{EM}}{\partial(\partial_\mu A_\nu)} \right]_{,\mu}F_{\gamma\nu}
+ \frac{\partial \mathscr{L}_{EM}}{\partial(\partial_\mu A_\nu)} F_{\gamma\nu,\mu}
-\left( \mathscr{L}_{EM} \right)_{,\gamma}\\
&=\left[ \frac{\partial \mathscr{L}_{EM}}{\partial(\partial_\mu A_\nu)} \right]_{,\mu}F_{\gamma\nu}
-\frac{1}{4\pi c} g^{\mu\alpha}g^{\nu\beta} \sqrt{-g} F_{\alpha\beta}F_{\gamma\nu,\mu}
-\left( -\frac{1}{16\pi c} g^{\mu\alpha}g^{\nu\beta}F_{\alpha\beta}F_{\mu\nu}\sqrt{-g} \right)_{,\gamma}\\
&=\left[ \frac{\partial \mathscr{L}_{EM}}{\partial(\partial_\mu A_\nu)} \right]_{,\mu}F_{\gamma\nu}
-\frac{1}{4\pi c} g^{\mu\alpha}g^{\nu\beta} \sqrt{-g} F_{\alpha\beta}F_{\gamma\nu,\mu}
+ \frac{1}{8\pi c} g^{\mu\alpha}g^{\nu\beta}\sqrt{-g}F_{\alpha\beta}F_{\mu\nu,\gamma}
+ \frac{1}{16\pi c}\left( g^{\mu\alpha}g^{\nu\beta}\sqrt{-g} \right)_{,\gamma}F_{\alpha\beta}F_{\mu\nu}
\end{align*}
\noindent Using the Bianchi identity of \(F_{\mu\nu}\),
\begin{align*}
&F_{\mu\nu,\gamma}+F_{\nu\gamma,\mu}+F_{\gamma\mu,\nu}=0\\
\to &F_{\mu\nu,\gamma}=-F_{\nu\gamma,\mu}-F_{\gamma\mu,\nu}
\end{align*}
\noindent The term
\begin{align*}
g^{\mu\alpha}g^{\nu\beta}\sqrt{-g} F_{\alpha\beta}F_{\mu\nu,\gamma}
&=-g^{\mu\alpha}g^{\nu\beta}\sqrt{-g} F_{\alpha\beta}F_{\nu\gamma,\mu}-g^{\mu\alpha}g^{\nu\beta}\sqrt{-g} F_{\alpha\beta}F_{\gamma\mu,\nu}\\
&=-g^{\mu\alpha}g^{\nu\beta}\sqrt{-g} F_{\alpha\beta}F_{\nu\gamma,\mu}-g^{\textcolor{blue}{\nu}\textcolor{red}{\beta}}g^{\textcolor{blue}{\mu}\textcolor{red}{\alpha}}\sqrt{-g} F_{\textcolor{red}{\beta\alpha}}F_{\gamma\textcolor{blue}{\nu,\mu}}\\
&=\textcolor{blue}{+}g^{\mu\alpha}g^{\nu\beta}\sqrt{-g} F_{\alpha\beta}F_{\textcolor{blue}{\gamma\nu},\mu}\textcolor{red}{+}g^{\mu\alpha}g^{\nu\beta}\sqrt{-g} F_{\textcolor{red}{\alpha\beta}}F_{\gamma\nu,\mu}\\
&=2g^{\mu\alpha}g^{\nu\beta}\sqrt{-g} F_{\alpha\beta}F_{\gamma\nu,\mu}
\end{align*}
\begin{adjustwidth}{-2.5cm}{-1cm}
\begin{align*}
&\left(t_{EM}\right)^\mu_{\gamma,\mu} \\
&=\left[ \frac{\partial \mathscr{L}_{EM}}{\partial(\partial_\mu A_\nu)} \right]_{,\mu}F_{\gamma\nu}
-\frac{1}{4\pi c} g^{\mu\alpha}g^{\nu\beta} \sqrt{-g} F_{\alpha\beta}F_{\gamma\nu,\mu}
+ \frac{1}{4\pi c} g^{\mu\alpha}g^{\nu\beta}F_{\alpha\beta}\sqrt{-g}F_{\alpha\beta}F_{\gamma\nu,\mu}
+ \frac{1}{16\pi c}\left( g^{\mu\alpha}g^{\nu\beta}\sqrt{-g} \right)_{,\gamma}F_{\alpha\beta}F_{\mu\nu}\\
&=\left[ \frac{\partial \mathscr{L}_{EM}}{\partial(\partial_\mu A_\nu)} \right]_{,\mu}F_{\gamma\nu}
+ \frac{1}{16\pi c}\left( g^{\mu\alpha}g^{\nu\beta}\sqrt{-g} \right)_{,\gamma}F_{\alpha\beta}F_{\mu\nu}\\
&=\left[ \frac{\partial \mathscr{L}_{EM}}{\partial(\partial_\mu A_\nu)} \right]_{,\mu}F_{\gamma\nu}
+ \frac{1}{16\pi c}\left( 2{g^{\mu\alpha}}_{,\gamma}g^{\nu\beta}\sqrt{-g}+ g^{\mu\alpha}g^{\nu\beta}{\sqrt{-g}}_{,\gamma} \right)F_{\alpha\beta}F_{\mu\nu}\\
&=\left[ \frac{\partial \mathscr{L}_{EM}}{\partial(\partial_\mu A_\nu)} \right]_{,\mu}F_{\gamma\nu}
+ \frac{1}{16\pi c}\left( 2{g^{\mu\alpha}}_{,\gamma}g^{\nu\beta}\sqrt{-g}-\frac{1}{2}g^{\mu\alpha}g^{\nu\beta}{\sqrt{-g}}g_{\phi\psi}{g^{\phi\psi}}_{,\gamma} \right)F_{\alpha\beta}F_{\mu\nu}\\
&=\left[ \frac{\partial \mathscr{L}_{EM}}{\partial(\partial_\mu A_\nu)} \right]_{,\mu}F_{\gamma\nu}
+ \frac{1}{16\pi c}\left( 2{g^{\mu\alpha}}_{,\gamma}g^{\nu\beta}\sqrt{-g}
F_{\alpha\beta}F_{\mu\nu}-\frac{1}{2}g^{\mu\alpha}g^{\nu\beta}{\sqrt{-g}}g_{\phi\psi}{g^{\phi\psi}}_{,\gamma}F_{\alpha\beta}F_{\mu\nu} \right)\\
&=\left[ \frac{\partial \mathscr{L}_{EM}}{\partial(\partial_\mu A_\nu)} \right]_{,\mu}F_{\gamma\nu}
+ \frac{1}{16\pi c}\left( 2{g^{\mu\alpha}}_{,\gamma}g^{\nu\beta}\sqrt{-g}
F_{\alpha\beta}F_{\mu\nu}-\frac{1}{2}g^{\phi\psi}g^{\nu\beta}{\sqrt{-g}}g_{\mu\alpha}{g^{\mu\alpha}}_{,\gamma}F_{\psi\beta}F_{\phi\nu} \right)\\
&=\left[ \frac{\partial \mathscr{L}_{EM}}{\partial(\partial_\mu A_\nu)} \right]_{,\mu}F_{\gamma\nu}
+ \frac{1}{16\pi c}\left( 2g^{\nu\beta}\sqrt{-g}
F_{\alpha\beta}F_{\mu\nu}-\frac{1}{2}g^{\phi\psi}g^{\nu\beta}{\sqrt{-g}}g_{\mu\alpha}F_{\psi\beta}F_{\phi\nu} \right){g^{\mu\alpha}}_{,\gamma}\\
&=\left[ \frac{\partial \mathscr{L}_{EM}}{\partial(\partial_\mu A_\nu)} \right]_{,\mu}F_{\gamma\nu}
+ \frac{1}{16\pi c}\left( 2g^{\nu\beta}\sqrt{-g}
F_{\alpha\beta}F_{\mu\nu}-\frac{1}{2}g^{\phi\psi}g^{\nu\beta}{\sqrt{-g}}g_{\mu\alpha}F_{\psi\beta}F_{\phi\nu} \right)\delta^\mu_\sigma{g^{\sigma\alpha}}_{,\gamma}\\
&=\left[ \frac{\partial \mathscr{L}_{EM}}{\partial(\partial_\mu A_\nu)} \right]_{,\mu}F_{\gamma\nu}
+ \frac{1}{16\pi c}\left( 2g^{\nu\beta}\sqrt{-g}
F_{\alpha\beta}F_{\mu\nu}-\frac{1}{2}g^{\phi\psi}g^{\nu\beta}{\sqrt{-g}}g_{\mu\alpha}F_{\psi\beta}F_{\phi\nu} \right)g^{\mu\xi}g_{\xi\sigma}{g^{\sigma\alpha}}_{,\gamma}\\
&=\left[ \frac{\partial \mathscr{L}_{EM}}{\partial(\partial_\mu A_\nu)} \right]_{,\mu}F_{\gamma\nu}
+ \frac{1}{16\pi c}\left( 2g^{\mu\xi}g^{\nu\beta}\sqrt{-g}
F_{\alpha\beta}F_{\mu\nu}-\frac{1}{2}\delta^\xi_\alpha g^{\phi\psi}g^{\nu\beta}{\sqrt{-g}}F_{\psi\beta}F_{\phi\nu} \right)g_{\xi\sigma}{g^{\sigma\alpha}}_{,\gamma}\\
&=\left[ \frac{\partial \mathscr{L}_{EM}}{\partial(\partial_\mu A_\nu)} \right]_{,\mu}F_{\gamma\nu}
- \frac{1}{2}\left({t_{EM}}\right)^\xi_\alpha g_{\xi\sigma}{g^{\sigma\alpha}}_{,\gamma}\\
&=\left[ \frac{\partial \mathscr{L}_{EM}}{\partial(\partial_\mu A_\nu)} \right]_{,\mu}F_{\gamma\nu}
- \frac{1}{2}\left({t_{EM}}\right)^\xi_\alpha g_{\xi\sigma}
\left(
-g^{\mu\alpha}\Gamma^\sigma_{\mu\gamma}
-g^{\sigma\mu}\Gamma^\alpha_{\mu\gamma}
+\frac{2}{\mathbb{D}-1}g^{\sigma\alpha}T_{\gamma}\right)\\
&=\left[ \frac{\partial \mathscr{L}_{EM}}{\partial(\partial_\mu A_\nu)} \right]_{,\mu}F_{\gamma\nu}
- \frac{1}{2}\left({t_{EM}}\right)^\xi_\alpha
\left(
-g_{\xi\sigma}g^{\mu\alpha}\Gamma^\sigma_{\mu\gamma}
-g_{\xi\sigma}g^{\sigma\mu}\Gamma^\alpha_{\mu\gamma}
+\frac{2}{\mathbb{D}-1}g_{\xi\sigma}g^{\sigma\alpha}T_{\gamma}\right)\\
&=\left[ \frac{\partial \mathscr{L}_{EM}}{\partial(\partial_\mu A_\nu)} \right]_{,\mu}F_{\gamma\nu}
- \frac{1}{2}\left({t_{EM}}\right)^\xi_\alpha
\left(
-g_{\xi\sigma}g^{\mu\alpha}\Gamma^\sigma_{\mu\gamma}
-\delta_\xi^\mu \Gamma^\alpha_{\mu\gamma}
+\frac{2}{\mathbb{D}-1}\delta_\xi^\alpha T_{\gamma}\right)\\
&=\left[ \frac{\partial \mathscr{L}_{EM}}{\partial(\partial_\mu A_\nu)} \right]_{,\mu}F_{\gamma\nu}
+ \frac{1}{2}\left({t_{EM}}\right)^\xi_\alpha
\left(
g_{\xi\sigma}g^{\mu\alpha}
+\delta_\xi^\mu \delta_\sigma^\alpha
\right)\Gamma^\sigma_{\mu\gamma}
-\frac{1}{\mathbb{D}-1} \left({t_{EM}}\right)^\alpha _\alpha
T_{\gamma}\\
&=\left[ \frac{\partial \mathscr{L}_{EM}}{\partial(\partial_\mu A_\nu)} \right]_{,\mu}F_{\gamma\nu}
+ \frac{1}{2}\left({t_{EM}}\right)^\xi_\alpha
\left(
g_{\xi\sigma}g^{\mu\alpha}
+\delta_\xi^\mu \delta_\sigma^\alpha
\right)\Gamma^\sigma_{\gamma\mu}
+ \frac{1}{2}\left({t_{EM}}\right)^\xi_\alpha
\left(
g_{\xi\sigma}g^{\mu\alpha}
+\delta_\xi^\mu \delta_\sigma^\alpha
\right)T^\sigma_{\mu\gamma}
-\frac{1}{\mathbb{D}-1} \left({t_{EM}}\right)^\alpha _\alpha
T_{\gamma}\\
&=\left[ \frac{\partial \mathscr{L}_{EM}}{\partial(\partial_\mu A_\nu)} \right]_{,\mu}F_{\gamma\nu}
+ \frac{1}{2}\left({t_{EM}}\right)^\xi_\alpha
\left(
g_{\xi\sigma}g^{\mu\alpha}
+\delta_\xi^\mu \delta_\sigma^\alpha
\right)\Gamma^\sigma_{\gamma\mu}
+ \frac{1}{2}\left({t_{EM}}\right)^\xi_\alpha
\left(
g_{\xi\sigma}g^{\mu\alpha}
+\delta_\xi^\mu \delta_\sigma^\alpha
\right)
\frac{1}{\mathbb{D}-1}
\left(
\delta^\sigma_{\mu} T_\gamma
-\delta^\sigma_{\gamma} T_\mu
\right)
-\frac{1}{\mathbb{D}-1} \left({t_{EM}}\right)^\alpha _\alpha
T_{\gamma}\\
&=\left[ \frac{\partial \mathscr{L}_{EM}}{\partial(\partial_\mu A_\nu)} \right]_{,\mu}F_{\gamma\nu}
+ \frac{1}{2}\left({t_{EM}}\right)^\xi_\alpha
\left(
g_{\xi\sigma}g^{\mu\alpha}
+\delta_\xi^\mu \delta_\sigma^\alpha
\right)\Gamma^\sigma_{\gamma\mu}
+ \frac{1}{2(\mathbb{D}-1)} \left({t_{EM}}\right)^\xi_\alpha
\left(
g_{\xi\sigma}g^{\mu\alpha}\delta^\sigma_{\mu} T_\gamma
-g_{\xi\sigma}g^{\mu\alpha}\delta^\sigma_{\gamma} T_\mu
+\delta_\xi^\mu \delta_\sigma^\alpha \delta^\sigma_{\mu} T_\gamma
-\delta_\xi^\mu \delta_\sigma^\alpha \delta^\sigma_{\gamma} T_\mu
\right)\\&\qquad\qquad\qquad-\frac{1}{\mathbb{D}-1} \left({t_{EM}}\right)^\alpha_\alpha
T_{\gamma}\\
&=\left[ \frac{\partial \mathscr{L}_{EM}}{\partial(\partial_\mu A_\nu)} \right]_{,\mu}F_{\gamma\nu}
+ \frac{1}{2}\left({t_{EM}}\right)^\xi_\alpha
\left(
g_{\xi\sigma}g^{\mu\alpha}
+\delta_\xi^\mu \delta_\sigma^\alpha
\right)\Gamma^\sigma_{\gamma\mu}
+ \frac{1}{2(\mathbb{D}-1)} \left({t_{EM}}\right)^\xi_\alpha
\left(
\delta^\alpha_\xi T_\gamma
-g_{\xi\gamma}g^{\mu\alpha} T_\mu
+ \delta^\alpha_\xi T_\gamma
- \delta^\alpha_{\gamma} T_\xi
\right)
-\frac{1}{\mathbb{D}-1} \left({t_{EM}}\right)^\alpha_\alpha
T_{\gamma}\\
&=\left[ \frac{\partial \mathscr{L}_{EM}}{\partial(\partial_\mu A_\nu)} \right]_{,\mu}F_{\gamma\nu}
+ \frac{1}{2}\left({t_{EM}}\right)^\xi_\alpha
\left(
g_{\xi\sigma}g^{\mu\alpha}
+\delta_\xi^\mu \delta_\sigma^\alpha
\right)\Gamma^\sigma_{\gamma\mu}
+ \frac{1}{2(\mathbb{D}-1)}
\left(
\cancel{\left({t_{EM}}\right)^\alpha_\alpha T_\gamma}
-\left({t_{EM}}\right)^\xi_\alpha g_{\xi\gamma}g^{\mu\alpha} T_\mu
+ \cancel{\left({t_{EM}}\right)^\alpha_\alpha T_\gamma
}- \left({t_{EM}}\right)^\xi_\alpha\delta^\alpha_{\gamma} T_\xi
\right)\\&\qquad\qquad\qquad
-\cancel{\frac{1}{\mathbb{D}-1} \left({t_{EM}}\right)^\alpha_\alpha
T_{\gamma}}
\end{align*}
\end{adjustwidth}
\begin{adjustwidth}{-2.5cm}{-1cm}
\begin{align*}
&=\left[ \frac{\partial \mathscr{L}_{EM}}{\partial(\partial_\mu A_\nu)} \right]_{,\mu}F_{\gamma\nu}
+ \frac{1}{2}\left({t_{EM}}\right)^\xi_\alpha
\left(
g_{\xi\sigma}g^{\mu\alpha}
+\delta_\xi^\mu \delta_\sigma^\alpha
\right)\Gamma^\sigma_{\gamma\mu}
+ \frac{1}{2(\mathbb{D}-1)}
\left(
-\left({t_{EM}}\right)^\xi_\alpha g_{\xi\gamma}g^{\mu\alpha} T_\mu
- \left({t_{EM}}\right)^\xi_\alpha \delta^\alpha_{\gamma} \delta^\mu_\xi T_\mu
\right)\\
&=\left[ \frac{\partial \mathscr{L}_{EM}}{\partial(\partial_\mu A_\nu)} \right]_{,\mu}F_{\gamma\nu}
+ \frac{1}{2}\left({t_{EM}}\right)^\xi_\alpha
\left(
g_{\xi\sigma}g^{\mu\alpha}
+\delta_\xi^\mu \delta_\sigma^\alpha
\right)\Gamma^\sigma_{\gamma\mu}
- \frac{1}{2(\mathbb{D}-1)}
\left({t_{EM}}\right)^\xi_\alpha
T_\mu
\left(
g_{\xi\gamma}g^{\mu\alpha}
+ \delta^\alpha_{\gamma} \delta^\mu_\xi
\right)
\\
&=\left[ \frac{\partial \mathscr{L}_{EM}}{\partial(\partial_\mu A_\nu)} \right]_{,\mu}F_{\gamma\nu}
+ \frac{1}{2}\left({t_{EM}}\right)^\xi_\alpha
\left(
g_{\xi\sigma}g^{\mu\alpha}
+\delta_\xi^\mu \delta_\sigma^\alpha
\right)\Gamma^\sigma_{\gamma\mu}
- \frac{1}{2(\mathbb{D}-1)}
\left({t_{EM}}\right)^\xi_\alpha
\left(
g_{\xi\sigma}g^{\mu\alpha}
+ \delta^\alpha_{\sigma} \delta^\mu_\xi
\right)\delta^\sigma_{\gamma} T_\mu\\
&=\left[ \frac{\partial \mathscr{L}_{EM}}{\partial(\partial_\mu A_\nu)} \right]_{,\mu}F_{\gamma\nu}
+ \frac{1}{2}\left({t_{EM}}\right)^\xi_\alpha
\left(
g_{\xi\sigma}g^{\mu\alpha}
+\delta_\xi^\mu \delta_\sigma^\alpha
\right)
\left(
\Gamma^\sigma_{\gamma\mu}
- \frac{1}{\mathbb{D}-1}\delta^\sigma_{\gamma} T_\mu
\right)
\end{align*}
\end{adjustwidth}
\begin{adjustwidth}{-2.5cm}{-1cm}
\begin{align*}
&\left(t_{EM}\right)^\mu_{\gamma,\mu} \\
&=\left[ \frac{\partial \mathscr{L}_{EM}}{\partial(\partial_\mu A_\nu)} \right]_{,\mu}F_{\gamma\nu}
-\frac{1}{4\pi c} g^{\mu\alpha}g^{\nu\beta} \sqrt{-g} F_{\alpha\beta}F_{\gamma\nu,\mu}
+ \frac{1}{4\pi c} g^{\mu\alpha}g^{\nu\beta}F_{\alpha\beta}\sqrt{-g}F_{\alpha\beta}F_{\gamma\nu,\mu}
+ \frac{1}{16\pi c}\left( g^{\mu\alpha}g^{\nu\beta}\sqrt{-g} \right)_{,\gamma}F_{\alpha\beta}F_{\mu\nu}\\
&=\left[ \frac{\partial \mathscr{L}_{EM}}{\partial(\partial_\mu A_\nu)} \right]_{,\mu}F_{\gamma\nu}
+ \frac{1}{16\pi c}\left( g^{\mu\alpha}g^{\nu\beta}\sqrt{-g} \right)_{,\gamma}F_{\alpha\beta}F_{\mu\nu}\\
&=\left[ \frac{\partial \mathscr{L}_{EM}}{\partial(\partial_\mu A_\nu)} \right]_{,\mu}F_{\gamma\nu}
+ \frac{1}{16\pi c}\left( 2{g^{\mu\alpha}}_{,\gamma}g^{\nu\beta}\sqrt{-g}+ g^{\mu\alpha}g^{\nu\beta}{\sqrt{-g}}_{,\gamma} \right)F_{\alpha\beta}F_{\mu\nu}\\
&=\left[ \frac{\partial \mathscr{L}_{EM}}{\partial(\partial_\mu A_\nu)} \right]_{,\mu}F_{\gamma\nu}
+ \frac{1}{16\pi c}\left( 2{g^{\mu\alpha}}_{,\gamma}g^{\nu\beta}\sqrt{-g}-\frac{1}{2}g^{\mu\alpha}g^{\nu\beta}{\sqrt{-g}}g_{\phi\psi}{g^{\phi\psi}}_{,\gamma} \right)F_{\alpha\beta}F_{\mu\nu}\\
&=\left[ \frac{\partial \mathscr{L}_{EM}}{\partial(\partial_\mu A_\nu)} \right]_{,\mu}F_{\gamma\nu}
+ \frac{1}{16\pi c}\left( 2{g^{\mu\alpha}}_{,\gamma}g^{\nu\beta}\sqrt{-g}
F_{\alpha\beta}F_{\mu\nu}-\frac{1}{2}g^{\mu\alpha}g^{\nu\beta}{\sqrt{-g}}g_{\phi\psi}{g^{\phi\psi}}_{,\gamma}F_{\alpha\beta}F_{\mu\nu} \right)\\
&=\left[ \frac{\partial \mathscr{L}_{EM}}{\partial(\partial_\mu A_\nu)} \right]_{,\mu}F_{\gamma\nu}
+ \frac{1}{16\pi c}\left( 2{g^{\mu\alpha}}_{,\gamma}g^{\nu\beta}\sqrt{-g}
F_{\alpha\beta}F_{\mu\nu}-\frac{1}{2}g^{\phi\psi}g^{\nu\beta}{\sqrt{-g}}g_{\mu\alpha}{g^{\mu\alpha}}_{,\gamma}F_{\psi\beta}F_{\phi\nu} \right)\\
&=\left[ \frac{\partial \mathscr{L}_{EM}}{\partial(\partial_\mu A_\nu)} \right]_{,\mu}F_{\gamma\nu}
+ \frac{1}{16\pi c}\left( 2g^{\nu\beta}\sqrt{-g}
F_{\alpha\beta}F_{\mu\nu}-\frac{1}{2}g^{\phi\psi}g^{\nu\beta}{\sqrt{-g}}g_{\mu\alpha}F_{\psi\beta}F_{\phi\nu} \right){g^{\mu\alpha}}_{,\gamma}\\
&=\left[ \frac{\partial \mathscr{L}_{EM}}{\partial(\partial_\mu A_\nu)} \right]_{,\mu}F_{\gamma\nu}
+ \frac{\delta \mathscr{L}_{EM}}{\delta g^{\mu\alpha}}{g^{\mu\alpha}}_{,\gamma}\\
\end{align*}
\end{adjustwidth}
\begin{align*}
\to
\left(t_{EM}\right)^\mu_{\gamma;\mu}&= \left[ \frac{\partial \mathscr{L}_{EM}}{\partial(\partial_\mu A_\nu)} \right]_{,\mu}F_{\gamma\nu}
+\frac{1}{\mathbb{D}-1}\left({t_{EM}}\right)^\xi_\xi T_{\gamma}
\end{align*}
\begin{align*}
&=\left[ \frac{\partial \mathscr{L}_{EM}}{\partial(\partial_\mu A_\nu)} \right]_{,\mu}F_{\gamma\nu}
+ \frac{1}{16\pi c}\left(
-2 g^{\eta\alpha}\Gamma^\mu_{\eta\gamma}g^{\nu\beta}\sqrt{-g}
-2 g^{\mu\eta}\Gamma^\alpha_{\eta\gamma}g^{\nu\beta}\sqrt{-g}+
g^{\mu\alpha}g^{\nu\beta}\sqrt{-g}\Gamma_{\eta\gamma}^{\eta} \right)F_{\alpha\beta}F_{\mu\nu}\\
&=\left[ \frac{\partial \mathscr{L}_{EM}}{\partial(\partial_\mu A_\nu)} \right]_{,\mu}F_{\gamma\nu}
+ \frac{1}{16\pi c}\left(
-2 g^{\eta\alpha}g^{\nu\beta}\Gamma^\mu_{\eta\gamma}
-2 g^{\mu\eta}g^{\nu\beta}\Gamma^\alpha_{\eta\gamma}+
g^{\mu\alpha}g^{\nu\beta}\Gamma_{\eta\gamma}^{\eta} \right)\sqrt{-g}F_{\alpha\beta}F_{\mu\nu}\\
&=\left[ \frac{\partial \mathscr{L}_{EM}}{\partial(\partial_\mu A_\nu)} \right]_{,\mu}F_{\gamma\nu}
+\frac{1}{16\pi c}\left(
-2 g^{\eta\alpha}g^{\nu\beta}\Gamma^\mu_{\eta\gamma}
-2 g^{\mu\eta}g^{\nu\beta}\Gamma^\alpha_{\eta\gamma}+
g^{\mu\alpha}g^{\nu\beta}\Gamma_{\eta\gamma}^{\eta} \right)\sqrt{-g}F_{\alpha\beta}F_{\mu\nu}\\
&=\left[ \frac{\partial \mathscr{L}_{EM}}{\partial(\partial_\mu A_\nu)} \right]_{,\mu}F_{\gamma\nu}
+\frac{1}{16\pi c}\left(
-2 g^{\eta\alpha}g^{\nu\beta}\Gamma^\mu_{\eta\gamma}F_{\alpha\beta}F_{\mu\nu}
-2 g^{\mu\eta}g^{\nu\beta}\Gamma^\alpha_{\eta\gamma}F_{\alpha\beta}F_{\mu\nu}+
g^{\mu\alpha}g^{\nu\beta}\Gamma_{\eta\gamma}^{\eta} F_{\alpha\beta}F_{\mu\nu}
\right)\sqrt{-g}\\
&=\left[ \frac{\partial \mathscr{L}_{EM}}{\partial(\partial_\mu A_\nu)} \right]_{,\mu}F_{\gamma\nu}
+\frac{1}{16\pi c}\left(
-2 g^{\eta\alpha}g^{\nu\beta}\Gamma^\mu_{\eta\gamma}F_{\alpha\beta}F_{\mu\nu}
-2 g^{\textcolor{red}{\alpha}\eta}g^{\textcolor{blue}{\beta\nu}}\Gamma^{\textcolor{red}{\mu}}_{\eta\gamma}F_{\textcolor{red}{\mu}\textcolor{blue}{\nu}}F_{\textcolor{red}{\alpha}\textcolor{blue}{\beta}}+
g^{\mu\alpha}g^{\nu\beta}\Gamma_{\eta\gamma}^{\eta} F_{\alpha\beta}F_{\mu\nu}
\right)\sqrt{-g}\\
&=\left[ \frac{\partial \mathscr{L}_{EM}}{\partial(\partial_\mu A_\nu)} \right]_{,\mu}F_{\gamma\nu}
+\frac{1}{16\pi c}\left(
-4 g^{\eta\alpha}g^{\nu\beta}\Gamma^\mu_{\eta\gamma}F_{\alpha\beta}F_{\mu\nu}
+ g^{\mu\alpha}g^{\nu\beta}\Gamma_{\eta\gamma}^{\eta} F_{\alpha\beta}F_{\mu\nu}
\right)\sqrt{-g}\\
&=\left[ \frac{\partial \mathscr{L}_{EM}}{\partial(\partial_\mu A_\nu)} \right]_{,\mu}F_{\gamma\nu}
+\frac{1}{16\pi c}\left(
-4 g^{\eta\alpha}g^{\nu\beta}F_{\alpha\beta}F_{\mu\nu}\Gamma^\mu_{\eta\gamma}
+\delta^\eta_{\textcolor{red}{\mu}} g^{\mu\alpha}g^{\nu\beta} F_{\alpha\beta}F_{\mu\nu}
\Gamma_{\eta\gamma}^{\textcolor{red}{\mu}} \right)\sqrt{-g}\\
&=\left[ \frac{\partial \mathscr{L}_{EM}}{\partial(\partial_\mu A_\nu)} \right]_{,\mu}F_{\gamma\nu}
+\frac{1}{16\pi c}\left(
-4 g^{\eta\alpha}g^{\nu\beta}F_{\alpha\beta}F_{\mu\nu}
+\delta^\eta_\mu g^{\mu\alpha}g^{\nu\beta} F_{\alpha\beta}F_{\mu\nu}
\right)\Gamma^\mu_{\eta\gamma}\sqrt{-g}\\
&=\left[ \frac{\partial \mathscr{L}_{EM}}{\partial(\partial_\mu A_\nu)} \right]_{,\mu}F_{\gamma\nu}
+\left[
-\frac{1}{4\pi c} g^{\eta\alpha}g^{\nu\beta}F_{\alpha\beta}\sqrt{-g}F_{\mu\nu}
-\delta^\eta_\mu \left(-\frac{1}{16\pi c} g^{\mu\alpha}g^{\nu\beta} F_{\alpha\beta}F_{\mu\nu}\sqrt{-g}
\right)
\right]\Gamma^\mu_{\eta\gamma}\\
&=\left[ \frac{\partial \mathscr{L}_{EM}}{\partial(\partial_\mu A_\nu)} \right]_{,\mu}F_{\gamma\nu}
+\left[
\frac{\partial \mathscr{L}_{EM}}{\partial(\partial_\eta A_\nu)}F_{\mu\nu}
-\delta^\eta_\mu \mathscr{L}_{EM}
\right]\Gamma^\mu_{\eta\gamma}\\
&=\left[ \frac{\partial \mathscr{L}_{EM}}{\partial(\partial_\mu A_\nu)} \right]_{,\mu}F_{\gamma\nu}
+\left( t_{EM}\right)^\eta_\mu \Gamma^\mu_{\eta\gamma}
\end{align*}
\noindent Fact \(\text{Torsion-free Metric compatible connection:} \sqrt{-g}\ _{;\gamma} =0\)
\begin{align*}
&T^\mu_{\gamma;\nu}=T^\mu_{\gamma,\nu}+T^\eta_\gamma \Gamma^\mu_{\eta\nu}-T^\mu_\eta \Gamma^\eta_{\gamma\nu}\\
&T^\mu_{\gamma;\mu}=T^\mu_{\gamma,\mu}+T^\eta_\gamma \Gamma^\mu_{\eta\mu}-T^\mu_\eta \Gamma^\eta_{\gamma\mu}\\
&T^\mu_{\gamma;\mu} \sqrt{-g}=T^\mu_{\gamma,\mu} \sqrt{-g}+T^\eta_\gamma \sqrt{-g}\Gamma^\mu_{\eta\mu}
-T^\mu_\eta \sqrt{-g} \ \Gamma^\eta_{\gamma\mu}\\
&T^\mu_{\gamma;\mu} \sqrt{-g}=T^\mu_{\gamma,\mu} \sqrt{-g}+T^\eta_\gamma \sqrt{-g}\Gamma^\mu_{\mu\eta}
+T^\eta_\gamma \sqrt{-g}T^\mu_{\eta\mu}-T^\mu_\eta \sqrt{-g} \ \Gamma^\eta_{\gamma\mu}\\
&\left(T^\mu_{\gamma} \sqrt{-g}\right)_{;\mu}=T^\mu_{\gamma,\mu} \sqrt{-g}+T^\mu_\gamma \sqrt{-g}\ _{,\mu}
-T^\eta_\gamma \sqrt{-g}T^\mu_{\mu\eta}-T^\mu_\eta \sqrt{-g} \ \Gamma^\eta_{\gamma\mu}\\
&\left(T^\mu_{\gamma} \sqrt{-g}\right)_{;\mu}=\left(T^\mu_\gamma \sqrt{-g}\right)_{,\mu}
-\left(T^\eta_\gamma \sqrt{-g}\right)T_{\eta}- \left(T^\mu_\eta \sqrt{-g}\right)\Gamma^\eta_{\gamma\mu}\\
&t^\mu_{\gamma;\mu}=t^\mu_{\gamma,\mu} - t^\mu_\eta \Gamma^\eta_{\gamma\mu}- t^\mu_\gamma T_{\mu}
\end{align*}
\noindent Fact: for any antisymmetric 2-tensor \(F^{\mu\gamma}=-F^{\gamma\mu}\):
\begin{align*}
{F^{\mu\gamma}}_{;\nu}&={F^{\mu\gamma}}_{,\nu}+F^{\eta\gamma} \Gamma^\mu_{\eta\nu}+F^{\mu\eta} \Gamma^\gamma_{\eta\nu}\\
{F^{\mu\gamma}}_{;\mu}&={F^{\mu\gamma}}_{,\mu}+\underbrace{F^{\eta\gamma} \Gamma^\mu_{\eta\mu}}_{=F^{\eta\gamma}\Gamma^\mu_{\mu\eta}+F^{\eta\gamma}T^\mu_{\eta\mu}}+\underbrace{F^{\mu\eta} \Gamma^\gamma_{\eta\mu}}_{=\frac{1}{2}F^{\mu\eta} T^\gamma_{\eta\mu}}\\
&={F^{\mu\gamma}}_{,\mu}+F^{\eta\gamma}\Gamma^\mu_{\mu\eta}+F^{\eta\gamma}T^\mu_{\eta\mu}+\frac{1}{2\left(\mathbb{D}-1\right)}F^{\mu\eta} \left(\delta^\gamma_\eta T_\mu-\delta^\gamma_\mu T_\eta \right)\\
&={F^{\mu\gamma}}_{,\mu}+F^{\eta\gamma} \Gamma^\mu_{\mu\eta}
-F^{\eta\gamma}T^\mu_{\mu\eta}-\frac{1}{\left(\mathbb{D}-1\right)}F^{\mu\eta} \delta^\gamma_\eta T_\mu\\
&={F^{\mu\gamma}}_{,\mu}+F^{\eta\gamma} \Gamma^\mu_{\mu\eta}-F^{\eta\gamma}T_{\eta}-\frac{1}{\left(\mathbb{D}-1\right)}F^{\mu\gamma} T_\mu\\
&={F^{\mu\gamma}}_{,\mu}+F^{\eta\gamma} \Gamma^\mu_{\mu\eta}-\frac{\mathbb{D}}{\left(\mathbb{D}-1\right)}F^{\mu\gamma} T_\mu\\
{F^{\mu\gamma}}_{;\mu}\sqrt{-g}&={F^{\mu\gamma}}_{,\mu}\sqrt{-g}+F^{\eta\gamma} \sqrt{-g}\Gamma^\mu_{\eta\mu}\\
&={F^{\mu\gamma}}_{,\mu}\sqrt{-g}+F^{\eta\gamma} \sqrt{-g} \ _{,\mu}\\
{\left(F^{\mu\gamma}\sqrt{-g} \right)}_{;\mu}&={\left(F^{\mu\gamma}\sqrt{-g} \right)}_{,\mu}\\
\end{align*}
\subsection{YM conservation law and EoM}
\begin{adjustwidth}{-1.5cm}{-1cm}
\begin{align*}
\left(t_{YM}\right)^\mu_{\gamma,\mu}
&=\left[ \frac{\partial \mathscr{L}_{YM}}{\partial(\partial_\mu B^a_\nu)} G^a_{\gamma\nu} - \delta^\mu_\gamma \mathscr{L}_{YM} \right]_{,\mu}\\
&=\left[ \frac{\partial \mathscr{L}_{YM}}{\partial(\partial_\mu B^a_\nu)} \right]_{,\mu}G^a_{\gamma\nu}
+ \frac{\partial \mathscr{L}_{YM}}{\partial(\partial_\mu B^a_\nu)} G^a_{\gamma\nu,\mu}
-\left( \mathscr{L}_{YM} \right)_{,\gamma}\\
&=\left[ \frac{\partial \mathscr{L}_{YM}}{\partial(\partial_\mu B^a_\nu)} \right]_{,\mu}G^a_{\gamma\nu}
-\frac{1}{4\pi c}K_{ad} g^{\mu\alpha}g^{\nu\beta} \sqrt{-g} G^d_{\alpha\beta}G^a_{\gamma\nu,\mu}
-\left( -\frac{1}{16\pi c} K_{ad}g^{\mu\alpha}g^{\nu\beta}G^a_{\mu\nu}G^d_{\alpha\beta}\sqrt{-g} \right)_{,\gamma}\\
&=\left[ \frac{\partial \mathscr{L}_{YM}}{\partial(\partial_\mu B^a_\nu)} \right]_{,\mu}G^a_{\gamma\nu}
-\frac{1}{4\pi c}K_{ad} g^{\mu\alpha}g^{\nu\beta} \sqrt{-g} G^d_{\alpha\beta}G^a_{\gamma\nu,\mu}
+ \frac{1}{8\pi c}K_{ad} g^{\mu\alpha}g^{\nu\beta}\sqrt{-g}G^d_{\alpha\beta}G^a_{\mu\nu,\gamma}
+ \frac{1}{16\pi c}K_{ad}\left( g^{\mu\alpha}g^{\nu\beta}\sqrt{-g} \right)_{,\gamma}G^a_{\mu\nu}G^d_{\alpha\beta}\\
&=\left[ \frac{\partial \mathscr{L}_{YM}}{\partial(\partial_\mu B^a_\nu)} \right]_{,\mu}G^a_{\gamma\nu}
-\frac{1}{4\pi c}K_{da}g^{\mu\alpha}g^{\nu\beta}\sqrt{-g} G^d_{{\alpha\beta}}
\lambda f^a_{cb}G^c_{{\gamma\nu}}B^b_{\mu}
+ \frac{1}{16\pi c}K_{ad}\left( g^{\mu\alpha}g^{\nu\beta}\sqrt{-g} \right)_{,\gamma}G^a_{\mu\nu}G^d_{\alpha\beta}\\
&=\left[ \frac{\partial \mathscr{L}_{YM}}{\partial(\partial_\mu B^a_\nu)} \right]_{,\mu}G^a_{\gamma\nu}
-\left(\textcolor{orange}{-}\frac{1}{4\pi c}K_{d\textcolor{red}{c}}g^{\nu\beta}g^{\mu\alpha}\sqrt{-g} G^d_{{\textcolor{orange}{\beta\alpha}}}
\lambda f^{\textcolor{red}{c}}_{\textcolor{red}{a}b}B^b_{\mu} \right) G^{\textcolor{red}{a}}_{{\gamma\nu}}
+ \frac{1}{16\pi c}K_{ad}\left( g^{\mu\alpha}g^{\nu\beta}\sqrt{-g} \right)_{,\gamma}G^a_{\mu\nu}G^d_{\alpha\beta}\\
&=\left[ \frac{\partial \mathscr{L}_{YM}}{\partial(\partial_\mu B^a_\nu)} \right]_{,\mu}G^a_{\gamma\nu}
-\frac{\partial \mathscr{L}_{YM}}{\partial( B^a_\nu)} G^{\textcolor{red}{a}}_{{\gamma\nu}}
+ \frac{1}{16\pi c}K_{ad}\left( g^{\mu\alpha}g^{\nu\beta}\sqrt{-g} \right)_{,\gamma}G^a_{\mu\nu}G^d_{\alpha\beta}\\
&=\left\{ \left[ \frac{\partial \mathscr{L}_{YM}}{\partial(\partial_\mu B^a_\nu)} \right]_{,\mu}
-\frac{\partial \mathscr{L}_{YM}}{\partial( B^a_\nu)} \right\}G^a_{\gamma\nu}
+ \frac{1}{16\pi c}K_{ad}\left( g^{\mu\alpha}g^{\nu\beta}\sqrt{-g} \right)_{,\gamma}G^a_{\mu\nu}G^d_{\alpha\beta}\\
&=\left\{ \left[ \frac{\partial \mathscr{L}_{YM}}{\partial(\partial_\mu B^a_\nu)} \right]_{,\mu}
-\frac{\partial \mathscr{L}_{YM}}{\partial( B^a_\nu)} \right\}G^a_{\gamma\nu}
+ \left( t_{YM}\right)^\eta_\mu \Gamma^\mu_{\eta\gamma}
\end{align*}
\end{adjustwidth}
\subsection{Gauge Bianchi Identity}
\noindent
\begin{align*}
&D_{[\gamma} G^a_{\mu\nu]} =0\\
& D_{\gamma} G^a_{\mu\nu} +D_{\mu} G^a_{\nu\gamma} +D_{\nu} G^a_{\gamma\mu} =0\\
& \left(\partial_{\gamma}G^a_{\mu\nu}+\lambda f^a_{bc}B^b_\gamma G^c_{\mu\nu} \right)
+\left(\partial_{\mu} G^a_{\nu\gamma} +\lambda f^a_{bc}B^b_{\mu} G^c_{\nu\gamma}\right)
+\left(\partial_{\nu} G^a_{\gamma\mu}+\lambda f^a_{bc}B^b_{\nu} G^c_{\gamma\mu}\right)
=0\\
& \left(G^a_{\mu\nu,\gamma}-\lambda f^a_{cb}G^c_{\mu\nu} B^b_\gamma \right)
+\left( G^a_{\nu\gamma,\mu}-\lambda f^a_{cb}G^c_{\nu\gamma}B^b_{\mu} \right)
+\left( G^a_{\gamma\mu,\nu}-\lambda f^a_{cb} G^c_{\gamma\mu}B^b_{\nu}\right)
=0\\
& G^a_{\mu\nu,\gamma}
=\lambda f^a_{cb}G^c_{\mu\nu} B^b_\gamma
-\left( G^a_{\nu\gamma,\mu}-\lambda f^a_{cb}G^c_{\nu\gamma}B^b_{\mu} \right)
-\left( G^a_{\gamma\mu,\nu}-\lambda f^a_{cb} G^c_{\gamma\mu}B^b_{\nu}\right)
\end{align*}
\begin{adjustwidth}{-1.5cm}{-1cm}
\begin{align*}
K_{da}g^{\mu\alpha}g^{\nu\beta} G^d_{\alpha\beta}
G^a_{\mu\nu,\gamma}
&=K_{da}g^{\mu\alpha}g^{\nu\beta} G^d_{\alpha\beta}\lambda f^a_{cb}G^c_{\mu\nu} B^b_\gamma
-K_{da}g^{\mu\alpha}g^{\nu\beta} G^d_{\alpha\beta}
\left( G^a_{\nu\gamma,\mu}-\lambda f^a_{cb}G^c_{\nu\gamma}B^b_{\mu} \right)
-K_{da}g^{\mu\alpha}g^{\nu\beta} G^d_{\alpha\beta}
\left( G^a_{\gamma\mu,\nu}-\lambda f^a_{cb} G^c_{\gamma\mu}B^b_{\nu}\right)\\
&=K_{da}g^{\mu\alpha}g^{\nu\beta} G^d_{\alpha\beta}\lambda f^a_{cb}G^c_{\mu\nu} B^b_\gamma
-K_{da}g^{\mu\alpha}g^{\nu\beta} G^d_{\alpha\beta}
\left( G^a_{\nu\gamma,\mu}-\lambda f^a_{cb}G^c_{\nu\gamma}B^b_{\mu} \right)
-K_{da}g^{\textcolor{blue}{\nu}\textcolor{red}{\beta}}g^{\textcolor{blue}{\mu}\textcolor{red}{\alpha}} G^d_{\textcolor{red}{\beta\alpha}}
\left( G^a_{\gamma\textcolor{blue}{\nu,\mu}}-\lambda f^a_{cb} G^c_{\gamma\textcolor{blue}{\nu}}B^b_{\textcolor{blue}{\mu}}\right)\\
&=K_{da}g^{\mu\alpha}g^{\nu\beta} G^d_{\alpha\beta}\lambda f^a_{cb}G^c_{\mu\nu} B^b_\gamma
\textcolor{red}{+}2K_{da}g^{\mu\alpha}g^{\nu\beta} G^d_{\textcolor{red}{\alpha\beta}}
\left( G^a_{\textcolor{red}{\gamma\nu},\mu}-\lambda f^a_{cb}G^c_{\textcolor{red}{\gamma\nu}}B^b_{\mu} \right) \\
&=\textcolor{red}{0}
+2K_{da}g^{\mu\alpha}g^{\nu\beta} G^d_{{\alpha\beta}}
\left( G^a_{{\gamma\nu},\mu}-\lambda f^a_{cb}G^c_{{\gamma\nu}}B^b_{\mu} \right) \\
\end{align*}
\end{adjustwidth}
\begin{align*}
\frac{1}{8\pi c} K_{da}g^{\mu\alpha}g^{\nu\beta} \sqrt{-g}G^d_{\alpha\beta} G^a_{\mu\nu,\gamma}
&= \frac{1}{4\pi c}K_{da}g^{\mu\alpha}g^{\nu\beta}\sqrt{-g} G^d_{{\alpha\beta}}
\left( G^a_{{\gamma\nu},\mu}-\lambda f^a_{cb}G^c_{{\gamma\nu}}B^b_{\mu} \right)
\end{align*}
\begin{align*}
K_{da}f^a_{bc}&=f^f_{de} f^e_{af} f^a_{bc}\\
&=-f^f_{de} f^e_{fa} f^a_{bc}\\
&=f^f_{de}\left( f^e_{ba} f^a_{cf}+f^e_{ca} f^a_{fb}\right)\\
&=f^f_{de} f^e_{ba} f^a_{cf}\textcolor{red}{-} f^f_{de}f^e_{ca} f^a_{\textcolor{red}{bf}}
\end{align*}
\begin{align*}
K_{da}g^{\mu\alpha}g^{\nu\beta} G^d_{\alpha\beta}\lambda f^a_{cb}G^c_{\mu\nu} B^b_\gamma &=
\lambda K_{da}f^a_{cb}g^{\mu\alpha}g^{\nu\beta} G^d_{\alpha\beta}G^c_{\mu\nu} B^b_\gamma\\
&=\lambda \left(f^f_{de} f^e_{ba} f^a_{cf}- f^f_{de}f^e_{ca} f^a_{bf} \right) g^{\mu\alpha}g^{\nu\beta} G^d_{\alpha\beta}G^c_{\mu\nu} B^b_\gamma\\
&=\lambda f^f_{de} f^e_{ba} f^a_{cf} g^{\mu\alpha}g^{\nu\beta} G^d_{\alpha\beta}G^c_{\mu\nu} B^b_\gamma
-\lambda f^f_{{\textcolor{red}{c}}e}f^e_{{\textcolor{red}{d}}a} f^a_{bf} g^{\textcolor{orange}{\alpha\mu}}g^{\textcolor{blue}{\beta\nu}} G^{\textcolor{red}{c}}_{\textcolor{orange}{\mu}\textcolor{blue}{\nu}}G^{\textcolor{red}{d}}_{\textcolor{orange}{\alpha}\textcolor{blue}{\beta}}B^b_\gamma\\
&=\lambda f^f_{de} f^e_{ba} f^a_{cf} g^{\mu\alpha}g^{\nu\beta} G^d_{\alpha\beta}G^c_{\mu\nu} B^b_\gamma
-\lambda f^e_{{{d}}a} f^a_{bf} f^f_{ce} g^{\mu\alpha}g^{\nu\beta} G^{{d}}_{{\alpha}{\beta}}G^{{c}}_{{\mu}{\nu}}B^b_\gamma\\
&=\lambda f^f_{de} f^e_{ba} f^a_{cf} g^{\mu\alpha}g^{\nu\beta} G^d_{\alpha\beta}G^c_{\mu\nu} B^b_\gamma
-\lambda f^{\textcolor{orange}{f}}_{{{d}}\textcolor{red}{e}} f^{\textcolor{red}{e}}_{b\textcolor{blue}{a}} f^{\textcolor{blue}{a}}_{{{c}}\textcolor{orange}{f}} g^{\mu\alpha}g^{\nu\beta} G^{{d}}_{{\alpha}{\beta}}G^{{c}}_{{\mu}{\nu}}B^b_\gamma\\
&=0
\end{align*}
\subsection{GR conservation law and EoM}
\begin{align*}
\left(t_{GR}\right)^\gamma_\varepsilon
&=\frac{\partial \mathscr{L}_{GR}}{\partial \omega^b_{c\mu,\gamma}}
\mathscr{R}^b_{c\varepsilon\mu}
- \delta^\gamma_\varepsilon \mathscr{L}_{GR}\\
&=\frac{1}{2\kappa} e\,\eta^{ce}\left(e^\mu_e e^\gamma_b -e^\gamma_e e^\mu_b \right)\mathscr{R}^b_{c\varepsilon\mu}-\delta^\gamma_\varepsilon\frac{1}{2\kappa}e\, \eta^{ae}e^\sigma_e e^\omega_c \mathscr{R}^c_{a\omega\sigma}\\
&=e^c_\nu e^\alpha_b \frac{\partial \mathscr{L}_{GR}}{\partial \Gamma^\alpha_{\nu\mu,\gamma}}
\mathscr{R}^b_{c\varepsilon\mu}
- \delta^\gamma_\varepsilon \mathscr{L}_{GR}\\
&= \frac{\partial \mathscr{L}_{GR}}{\partial \Gamma^\alpha_{\nu\mu,\gamma}}
R^\alpha_{\nu\varepsilon\mu}
- \delta^\gamma_\varepsilon \mathscr{L}_{GR}\\
\end{align*}
\begin{align*}
\frac{\partial \mathscr{L}_{GR}}{\partial \Gamma_{\nu\mu,\gamma}^\alpha}
&= \frac{\partial}{\partial \Gamma_{\nu\mu,\gamma}^\alpha}
\left(\frac{1}{2\kappa} \sqrt{-g} \, g^{\kappa\sigma} \delta_\varepsilon^\omega R_{\kappa\omega\sigma}^\varepsilon \right) \nonumber\\
&=\frac{1}{2\kappa} \sqrt{-g} \left( g^{\nu\mu} \delta_\alpha^\gamma - g^{\nu\gamma} \delta_\alpha^\mu \right)
\end{align*}
\begin{adjustwidth}{-2.55cm}{-1cm}
\begin{align*}
\left(t_{GR}\right)^\gamma_{\varepsilon,\gamma}
&=\left[\frac{\partial \mathscr{L}_{GR}}{\partial \Gamma^\alpha_{\nu\mu,\gamma}}\right]_{,\gamma}
R^\alpha_{\nu\varepsilon\mu}
+\frac{\partial \mathscr{L}_{GR}}{\partial \Gamma^\alpha_{\nu\mu,\gamma}}
R^\alpha_{\nu\varepsilon\mu,\gamma}
- \delta^\gamma_\varepsilon \left(\mathscr{L}_{GR}\right)_{,\gamma}\\
&=\left[\frac{\partial \mathscr{L}_{GR}}{\partial \Gamma^\alpha_{\nu\mu,\gamma}}\right]_{,\gamma}
R^\alpha_{\nu\varepsilon\mu}
+\frac{1}{2\kappa} \sqrt{-g} \left( g^{\nu\mu} \delta_\alpha^\gamma - g^{\nu\gamma} \delta_\alpha^\mu \right)
R^\alpha_{\nu\varepsilon\mu,\gamma}
- \left(\frac{1}{2\kappa} \sqrt{-g} \, g^{\nu\mu} \delta^\gamma_\alpha R^\alpha_{\nu\gamma\mu} \right)_{,\varepsilon}\\
&=\left[\frac{\partial \mathscr{L}_{GR}}{\partial \Gamma^\alpha_{\nu\mu,\gamma}}\right]_{,\gamma}
R^\alpha_{\nu\varepsilon\mu}
+\frac{1}{2\kappa} \sqrt{-g} \left( g^{\nu\mu} \delta_\alpha^\gamma - g^{\nu\gamma} \delta_\alpha^\mu \right)
R^\alpha_{\nu\varepsilon\mu,\gamma}
- \frac{1}{2\kappa} \sqrt{-g} \, g^{\nu\mu} \delta^\gamma_\alpha R^\alpha_{\nu\gamma\mu,\varepsilon}
- \frac{1}{2\kappa} \delta^\gamma_\alpha R^\alpha_{\nu\gamma\mu} \left(\sqrt{-g} \, g^{\nu\mu}\right)_{,\varepsilon}\\
&=\left[\frac{\partial \mathscr{L}_{GR}}{\partial \Gamma^\alpha_{\nu\mu,\gamma}}\right]_{,\gamma}
R^\alpha_{\nu\varepsilon\mu}
+\frac{1}{2\kappa} \sqrt{-g} \left(
g^{\nu\mu} \delta_\alpha^\gamma R^\alpha_{\nu\varepsilon\mu,\gamma}
- g^{\nu\textcolor{red}{\mu}} \delta_\alpha^{\textcolor{red}{\gamma}} R^\alpha_{\nu\varepsilon\textcolor{red}{\gamma},\textcolor{red}{\mu}}
-g^{\nu\mu} \delta^\gamma_\alpha R^\alpha_{\nu\gamma\mu,\varepsilon}
\right)
- \frac{1}{2\kappa} \delta^\gamma_\alpha R^\alpha_{\nu\gamma\mu} \left(\sqrt{-g} \, g^{\nu\mu}\right)_{,\varepsilon}\\
&=\left[\frac{\partial \mathscr{L}_{GR}}{\partial \Gamma^\alpha_{\nu\mu,\gamma}}\right]_{,\gamma}
R^\alpha_{\nu\varepsilon\mu}
+\frac{1}{2\kappa} \sqrt{-g} g^{\nu\mu} \delta_\alpha^\gamma \left(
R^\alpha_{\nu\varepsilon\mu,\gamma}
\textcolor{red}{+}R^\alpha_{\nu\textcolor{red}{\gamma\varepsilon},\mu}
\textcolor{red}{+}R^\alpha_{\nu\textcolor{red}{\mu\gamma},\varepsilon}
\right)
- \frac{1}{2\kappa} \delta^\gamma_\alpha R^\alpha_{\nu\gamma\mu} \left(\sqrt{-g} \, g^{\nu\mu}\right)_{,\varepsilon}\\
&=\left[\frac{\partial \mathscr{L}_{GR}}{\partial \Gamma^\alpha_{\nu\mu,\gamma}}\right]_{,\gamma}
R^\alpha_{\nu\varepsilon\mu}
-\frac{\partial \mathscr{L}_{GR}}{\partial \Gamma^\alpha_{\nu\mu}}
R^{{\alpha}}_{\nu\varepsilon\mu}
- \frac{1}{2\kappa} \delta^\gamma_\alpha R^\alpha_{\nu\gamma\mu} \left(\sqrt{-g}\,_{,\varepsilon} g^{\nu\mu}+\sqrt{-g} \, {g^{\nu\mu}}_{,\varepsilon}\right)\\
&=\left\{
\left[\frac{\partial \mathscr{L}_{GR}}{\partial \Gamma^\alpha_{\nu\mu,\gamma}}\right]_{,\gamma}-\frac{\partial \mathscr{L}_{GR}}{\partial \Gamma^\alpha_{\nu\mu}} \right\}
R^\alpha_{\nu\varepsilon\mu}
- \frac{1}{2\kappa} R_{\nu\mu} \left(
\sqrt{-g}\, \Gamma^\eta_{\eta\varepsilon} g^{\nu\mu}
-\sqrt{-g} \, g^{\eta\mu}\Gamma^\nu_{\eta\varepsilon}
-\sqrt{-g} \, g^{\nu\eta}\Gamma^\mu_{\eta\varepsilon}
\right)\\
&=\left\{
\left[\frac{\partial \mathscr{L}_{GR}}{\partial \Gamma^\alpha_{\nu\mu,\gamma}}\right]_{,\gamma}-\frac{\partial \mathscr{L}_{GR}}{\partial \Gamma^\alpha_{\nu\mu}} \right\}
R^\alpha_{\nu\varepsilon\mu}
- \frac{1}{2\kappa} \left(
\sqrt{-g}\,g^{\nu\mu} R_{\nu\mu} \Gamma^\eta_{\eta\varepsilon}
-\sqrt{-g} \, g^{\eta\mu} R_{\nu\mu} \Gamma^\nu_{\eta\varepsilon}
-\sqrt{-g} \, g^{\nu\eta} R_{\nu\mu} \Gamma^\mu_{\eta\varepsilon}
\right)\\
&=\left\{
\left[\frac{\partial \mathscr{L}_{GR}}{\partial \Gamma^\alpha_{\nu\mu,\gamma}}\right]_{,\gamma}-\frac{\partial \mathscr{L}_{GR}}{\partial \Gamma^\alpha_{\nu\mu}} \right\}
R^\alpha_{\nu\varepsilon\mu}
- \frac{1}{2\kappa} \left(
\sqrt{-g}\,R\, \Gamma^\eta_{\eta\varepsilon}
-\sqrt{-g} \, g^{\eta\mu} R_{\nu\mu} \Gamma^\nu_{\eta\varepsilon}
-\sqrt{-g} \, g^{\textcolor{red}{\mu}\eta} R_{\textcolor{red}{\mu\nu}} \Gamma^{\textcolor{red}{\nu}}_{\eta\varepsilon}
\right)\\
&=\left\{
\left[\frac{\partial \mathscr{L}_{GR}}{\partial \Gamma^\alpha_{\nu\mu,\gamma}}\right]_{,\gamma}-\frac{\partial \mathscr{L}_{GR}}{\partial \Gamma^\alpha_{\nu\mu}} \right\}
R^\alpha_{\nu\varepsilon\mu}
- \frac{1}{2\kappa} \left(
\sqrt{-g}\, \textcolor{red}{\delta^\eta_\nu} R\, \Gamma^{\textcolor{red}{\nu}}_{\eta\varepsilon}
-2\sqrt{-g} \, g^{\eta\mu} R_{\mu\nu} \Gamma^\nu_{\eta\varepsilon}
\right)\\
&=\left\{
\left[\frac{\partial \mathscr{L}_{GR}}{\partial \Gamma^\alpha_{\nu\mu,\gamma}}\right]_{,\gamma}-\frac{\partial \mathscr{L}_{GR}}{\partial \Gamma^\alpha_{\nu\mu}} \right\}
R^\alpha_{\nu\varepsilon\mu}
+ \frac{1}{\kappa} \sqrt{-g} \left(
g^{\eta\mu} R_{\mu\nu}
-\frac{1}{2} \, \delta^\eta_\nu R
\right)\Gamma^\nu_{\eta\varepsilon}\\
&=\left\{
\left[\frac{\partial \mathscr{L}_{GR}}{\partial \Gamma^\alpha_{\nu\mu,\gamma}}\right]_{,\gamma}-\frac{\partial \mathscr{L}_{GR}}{\partial \Gamma^\alpha_{\nu\mu}} \right\}
R^\alpha_{\nu\varepsilon\mu}
+ \frac{1}{\kappa} \sqrt{-g} \, \mathbb{G}^\eta_\nu \,
\Gamma^\nu_{\eta\varepsilon}
\end{align*}
\end{adjustwidth}
\begin{align*}
R^\alpha_{\nu\varepsilon\mu;\gamma}
+R^\alpha_{\nu\gamma\varepsilon;\mu}
+R^\alpha_{\nu\mu\gamma;\varepsilon}
=0
\end{align*}
\begin{adjustwidth}{-2.55cm}{-1cm}
\begin{align*}
&\left(R^\alpha_{\nu\varepsilon\mu,\gamma}
+R^\eta_{\nu\varepsilon\mu} \Gamma^\alpha_{\eta\gamma}
-R^\alpha_{\eta\varepsilon\mu} \Gamma^\eta_{\nu\gamma}
-R^\alpha_{\nu\eta\mu} \Gamma^\eta_{\varepsilon\gamma}
-R^\alpha_{\nu\varepsilon\eta} \Gamma^\eta_{\mu\gamma}
\right)\\
&\quad\quad+\left(R^\alpha_{\nu\gamma\varepsilon,\mu}
+R^\eta_{\nu\gamma\varepsilon} \Gamma^\alpha_{\eta\mu}
-R^\alpha_{\eta\gamma\varepsilon} \Gamma^\eta_{\nu\mu}
-R^\alpha_{\nu\eta\varepsilon} \Gamma^\eta_{\gamma\mu}
-R^\alpha_{\nu\gamma\eta} \Gamma^\eta_{\varepsilon\mu}
\right)\\
&\quad\quad\quad\quad
+\left(R^\alpha_{\nu\mu\gamma,\varepsilon}
+R^\eta_{\nu\mu\gamma} \Gamma^\alpha_{\eta\varepsilon}
-R^\alpha_{\eta\mu\gamma} \Gamma^\eta_{\nu\varepsilon}
-R^\alpha_{\nu\eta\gamma} \Gamma^\eta_{\mu\varepsilon}
-R^\alpha_{\nu\mu\eta} \Gamma^\eta_{\gamma\varepsilon}
\right)
=0\\
\end{align*}
\end{adjustwidth}
\begin{align*}
R^\alpha_{\nu\varepsilon\mu,\gamma}
+R^\alpha_{\nu\gamma\varepsilon,\mu}
+R^\alpha_{\nu\mu\gamma,\varepsilon}
=&-\left(R^\eta_{\nu\varepsilon\mu} \Gamma^\alpha_{\eta\gamma}
-R^\alpha_{\eta\varepsilon\mu} \Gamma^\eta_{\nu\gamma}
-R^\alpha_{\nu\eta\mu} \Gamma^\eta_{\varepsilon\gamma}
-R^\alpha_{\nu\varepsilon\eta} \Gamma^\eta_{\mu\gamma}
\right)\\
&\quad\quad
-\left(R^\eta_{\nu\gamma\varepsilon} \Gamma^\alpha_{\eta\mu}
-R^\alpha_{\eta\gamma\varepsilon} \Gamma^\eta_{\nu\mu}
-R^\alpha_{\nu\eta\varepsilon} \Gamma^\eta_{\gamma\mu}
-R^\alpha_{\nu\gamma\eta} \Gamma^\eta_{\varepsilon\mu}
\right)\\
&\quad\quad\quad\quad
-\left(R^\eta_{\nu\mu\gamma} \Gamma^\alpha_{\eta\varepsilon}
-R^\alpha_{\eta\mu\gamma} \Gamma^\eta_{\nu\varepsilon}
-R^\alpha_{\nu\eta\gamma} \Gamma^\eta_{\mu\varepsilon}
-R^\alpha_{\nu\mu\eta} \Gamma^\eta_{\gamma\varepsilon}
\right)
\end{align*}
\begin{align*}
&-\frac{1}{2\kappa} \sqrt{-g} g^{\nu\mu} \delta_\alpha^\gamma \left(R^\eta_{\nu\varepsilon\mu} \Gamma^\alpha_{\eta\gamma}
-R^\alpha_{\eta\varepsilon\mu} \Gamma^\eta_{\nu\gamma}
-R^\alpha_{\nu\eta\mu} \Gamma^\eta_{\varepsilon\gamma}
-R^\alpha_{\nu\varepsilon\eta} \Gamma^\eta_{\mu\gamma}
\right)\\
&\quad\quad
-\frac{1}{2\kappa} \sqrt{-g} g^{\nu\mu} \delta_\alpha^\gamma \left(R^\eta_{\nu\gamma\varepsilon} \Gamma^\alpha_{\eta\mu}
-R^\alpha_{\eta\gamma\varepsilon} \Gamma^\eta_{\nu\mu}
-R^\alpha_{\nu\eta\varepsilon} \Gamma^\eta_{\gamma\mu}
-R^\alpha_{\nu\gamma\eta} \Gamma^\eta_{\varepsilon\mu}
\right)\\
&\quad\quad\quad\quad
-\frac{1}{2\kappa} \sqrt{-g} g^{\nu\mu} \delta_\alpha^\gamma \left(R^\eta_{\nu\mu\gamma} \Gamma^\alpha_{\eta\varepsilon}
-R^\alpha_{\eta\mu\gamma} \Gamma^\eta_{\nu\varepsilon}
-R^\alpha_{\nu\eta\gamma} \Gamma^\eta_{\mu\varepsilon}
-R^\alpha_{\nu\mu\eta} \Gamma^\eta_{\gamma\varepsilon}
\right)\\
=&-\frac{1}{2\kappa} \sqrt{-g} g^{\nu\mu}
\left(R^\eta_{\nu\varepsilon\mu} \Gamma^\alpha_{\eta\alpha}
-R^\alpha_{\eta\varepsilon\mu} \Gamma^\eta_{\nu\alpha}
-R^\alpha_{\nu\eta\mu} \Gamma^\eta_{\varepsilon\alpha}
-R^\alpha_{\nu\varepsilon\eta} \Gamma^\eta_{\mu\alpha}
\right)\\
&\quad\quad
-\frac{1}{2\kappa} \sqrt{-g} g^{\nu\mu}
\left(R^\eta_{\nu\alpha\varepsilon} \Gamma^\alpha_{\eta\mu}
-R^\alpha_{\eta\alpha\varepsilon} \Gamma^\eta_{\nu\mu}
-R^\alpha_{\nu\eta\varepsilon} \Gamma^\eta_{\alpha\mu}
-R^\alpha_{\nu\alpha\eta} \Gamma^\eta_{\varepsilon\mu}
\right)\\
&\quad\quad\quad\quad
-\frac{1}{2\kappa} \sqrt{-g}
\left(R^\eta_{\nu\mu\alpha} \Gamma^\alpha_{\eta\varepsilon}
-R^\alpha_{\eta\mu\alpha} \Gamma^\eta_{\nu\varepsilon}
-R^\alpha_{\nu\eta\alpha} \Gamma^\eta_{\mu\varepsilon}
-R^\alpha_{\nu\mu\eta} \Gamma^\eta_{\alpha\varepsilon}
\right)\\
=&-\frac{1}{2\kappa} \sqrt{-g}
\left(
g^{\nu\mu}R^\eta_{\nu\varepsilon\mu} \Gamma^\alpha_{\eta\alpha}
-g^{\nu\mu}R^\alpha_{\eta\varepsilon\mu} \Gamma^\eta_{\nu\alpha}
-g^{\nu\mu}R^\alpha_{\nu\eta\mu} \Gamma^\eta_{\varepsilon\alpha}
-g^{\nu\mu}R^\alpha_{\nu\varepsilon\eta} \Gamma^\eta_{\mu\alpha}
\right)\\
&\quad\quad
-\frac{1}{2\kappa} \sqrt{-g}
\left(
g^{\nu\mu}R^\eta_{\nu\alpha\varepsilon} \Gamma^\alpha_{\eta\mu}
-g^{\nu\mu}R^\alpha_{\eta\alpha\varepsilon} \Gamma^\eta_{\nu\mu}
-g^{\nu\mu}R^\alpha_{\nu\eta\varepsilon} \Gamma^\eta_{\alpha\mu}
-g^{\nu\mu}R^\alpha_{\nu\alpha\eta} \Gamma^\eta_{\varepsilon\mu}
\right)\\
&\quad\quad\quad\quad
-\frac{1}{2\kappa} \sqrt{-g}
\left(
g^{\nu\mu}R^\eta_{\nu\mu\alpha} \Gamma^\alpha_{\eta\varepsilon}
-g^{\nu\mu}R^\alpha_{\eta\mu\alpha} \Gamma^\eta_{\nu\varepsilon}
-g^{\nu\mu}R^\alpha_{\nu\eta\alpha} \Gamma^\eta_{\mu\varepsilon}
-g^{\nu\mu}R^\alpha_{\nu\mu\eta} \Gamma^\eta_{\alpha\varepsilon}
\right)\\
=&-\frac{1}{2\kappa} \sqrt{-g}
\left(
g^{\nu\mu}R^{\textcolor{red}{\alpha}}_{\nu\varepsilon\mu} \Gamma^{\textcolor{red}{\eta}}_{\textcolor{red}{\alpha\eta}}
-g^{\textcolor{red}{\eta}\mu}R^\alpha_{\textcolor{red}{\nu}\varepsilon\mu} \Gamma^{\textcolor{red}{\nu}}_{\textcolor{red}{\eta}\alpha}
-g^{\nu\mu}R^\alpha_{\nu\eta\mu} \Gamma^\eta_{\varepsilon\alpha}
-g^{\nu\textcolor{red}{\eta}}R^\alpha_{\nu\varepsilon\textcolor{red}{\mu}} \Gamma^{\textcolor{red}{\mu}}_{\textcolor{red}{\eta}\alpha}
\right)\\
&\quad\quad
-\frac{1}{2\kappa} \sqrt{-g}
\left(
\cancel{g^{\nu\textcolor{red}{\eta}}R^{\textcolor{red}{\alpha}}_{\nu\textcolor{red}{\mu}\varepsilon} \Gamma^{\textcolor{red}{\mu}}_{\textcolor{red}{\alpha\eta}}}
-g^{\textcolor{red}{\eta\gamma}}\textcolor{red}{\delta^\mu_\alpha}R^\alpha_{\textcolor{red}{\nu\mu}\varepsilon} \Gamma^{\textcolor{red}{\nu}}_{\textcolor{red}{\eta\gamma}}
-\cancel{g^{\nu\textcolor{red}{\eta}}R^\alpha_{\nu\textcolor{red}{\mu}\varepsilon} \Gamma^{\textcolor{red}{\mu}}_{\alpha\textcolor{red}{\eta}}}
-\xcancel{g^{\nu\mu}R^\alpha_{\nu\alpha\eta} \Gamma^\eta_{\varepsilon\mu}}
\right)\\
&\quad\quad\quad\quad
-\frac{1}{2\kappa} \sqrt{-g}
\left(
\bcancel{g^{\nu\mu}R^{\textcolor{red}{\alpha}}_{\nu\mu\textcolor{red}{\eta}} \Gamma^{\textcolor{red}{\eta}}_{\textcolor{red}{\alpha}\varepsilon}}
-g^{\nu\mu}R^\alpha_{\eta\mu\alpha} \Gamma^\eta_{\nu\varepsilon}
-\xcancel{g^{\nu\mu}R^\alpha_{\nu\eta\alpha} \Gamma^\eta_{\mu\varepsilon}}
-\bcancel{g^{\nu\mu}R^\alpha_{\nu\mu\eta} \Gamma^\eta_{\alpha\varepsilon}}
\right)\\
=&-\frac{1}{2\kappa} \sqrt{-g}
\left(
g^{\nu\mu}R^{{\alpha}}_{\nu\varepsilon\mu} \Gamma^{{\eta}}_{{\alpha\eta}}
-g^{{\eta}\mu}R^\alpha_{{\nu}\varepsilon\mu} \Gamma^{{\nu}}_{{\eta}\alpha}
-g^{\nu\mu}R^\alpha_{\nu\eta\mu} \Gamma^\eta_{\varepsilon\alpha}
-g^{\nu{\eta}}R^\alpha_{\nu\varepsilon{\mu}} \Gamma^{{\mu}}_{{\eta}\alpha}
\textcolor{red}{+}g^{{\eta\gamma}}{\delta^\mu_\alpha}R^\alpha_{\nu\textcolor{red}
{\varepsilon\mu}}\Gamma^{{\nu}}_{{\eta\gamma}}
-g^{\nu\mu}R^\alpha_{\eta\mu\alpha} \Gamma^\eta_{\nu\varepsilon}
\right)\\
=&-\frac{1}{2\kappa} \sqrt{-g}
\left(
g^{\nu\mu}R^{{\alpha}}_{\nu\varepsilon\mu} \Gamma^{{\eta}}_{{\alpha\eta}}
-g^{{\eta}\mu}R^\alpha_{{\nu}\varepsilon\mu} \Gamma^{{\nu}}_{{\eta}\alpha}
-g^{\nu{\eta}}R^\alpha_{\nu\varepsilon{\mu}} \Gamma^{{\mu}}_{{\eta}\alpha}
+g^{{\eta\gamma}}{\delta^\mu_\alpha}R^\alpha_{\nu\varepsilon\mu}\Gamma^{{\nu}}_{{\eta\gamma}}
\right)
-\frac{1}{2\kappa} \sqrt{-g}
\left(
-g^{\nu\mu}R^\alpha_{\nu\eta\mu} \Gamma^\eta_{\varepsilon\alpha}
-g^{\nu\mu}R^\alpha_{\eta\mu\alpha} \Gamma^\eta_{\nu\varepsilon}
\right)\\
=&-\frac{1}{2\kappa} \sqrt{-g}
\left(
g^{\eta\gamma}{\delta^\mu_\alpha}\Gamma^{{\nu}}_{{\eta\gamma}}+g^{\nu\mu} \Gamma^{{\eta}}_{{\alpha\eta}}
-g^{\eta\mu}\Gamma^{{\nu}}_{\eta\alpha}
-g^{\nu\eta} \Gamma^{\mu}_{\eta\alpha}
\right)
R^{{\alpha}}_{\nu\varepsilon\mu}
-\frac{1}{2\kappa} \sqrt{-g}
\left(
g^{\nu\mu}g^{\alpha\gamma}R_{\gamma\nu\textcolor{red}{\mu\eta}} \Gamma^\eta_{\varepsilon\alpha}
\textcolor{red}{+}g^{\nu\mu}R^\alpha_{\eta\textcolor{red}{\alpha\mu}} \Gamma^\eta_{\nu\varepsilon}
\right)\\
=&-\frac{\partial \mathscr{L}_{GR}}{\partial \Gamma^\alpha_{\nu\mu}}
R^{{\alpha}}_{\nu\varepsilon\mu}
-\frac{1}{2\kappa} \sqrt{-g}
\left(
g^{\nu\mu}g^{\alpha\gamma}R_{\mu\eta\gamma\nu} \Gamma^\eta_{\varepsilon\alpha}
+g^{\nu\mu}R_{\eta\mu} \Gamma^\eta_{\nu\varepsilon}
\right)\\
=&-\frac{\partial \mathscr{L}_{GR}}{\partial \Gamma^\alpha_{\nu\mu}}
R^{{\alpha}}_{\nu\varepsilon\mu}
-\frac{1}{2\kappa} \sqrt{-g}
\left(
\textcolor{red}{-}g^{\nu\mu}g^{\alpha\gamma}R_{\mu\eta\textcolor{red}{\nu\gamma}} \Gamma^\eta_{\varepsilon\alpha}
+g^{\nu\mu}R_{\eta\mu} \Gamma^\eta_{\nu\varepsilon}
\right)\\
=&-\frac{\partial \mathscr{L}_{GR}}{\partial \Gamma^\alpha_{\nu\mu}}
R^{{\alpha}}_{\nu\varepsilon\mu}
-\frac{1}{2\kappa} \sqrt{-g}
\left(
-g^{\alpha\gamma}R^\nu_{\eta{\nu\gamma}} \Gamma^\eta_{\varepsilon\alpha}
+g^{\nu\mu}R_{\eta\mu} \Gamma^\eta_{\nu\varepsilon}
\right)\\
=&-\frac{\partial \mathscr{L}_{GR}}{\partial \Gamma^\alpha_{\nu\mu}}
R^{{\alpha}}_{\nu\varepsilon\mu}
-\frac{1}{2\kappa} \sqrt{-g}
\left(
-g^{\alpha\gamma}R_{\eta\gamma} \Gamma^\eta_{\varepsilon\alpha}
+g^{\nu\mu}R_{\eta\mu} \Gamma^\eta_{\nu\varepsilon}
\right)\\
=&-\frac{\partial \mathscr{L}_{GR}}{\partial \Gamma^\alpha_{\nu\mu}}
R^{{\alpha}}_{\nu\varepsilon\mu}
-\frac{1}{2\kappa} \sqrt{-g}
\left(
-\cancel{g^{\textcolor{red}{\nu\mu}}R_{\eta\textcolor{red}{\mu}} \Gamma^\eta_{\varepsilon\textcolor{red}{\nu}}}
+\cancel{g^{\nu\mu}R_{\eta\mu} \Gamma^\eta_{\nu\varepsilon}}
\right)\\
=&-\frac{\partial \mathscr{L}_{GR}}{\partial \Gamma^\alpha_{\nu\mu}}
R^{{\alpha}}_{\nu\varepsilon\mu}
\end{align*}
\begin{adjustwidth}{-2.55cm}{-1cm}
\begin{align*}
&\left(t_{GR}\right)^\gamma_{\varepsilon,\gamma}\\
&=\left[\frac{\partial \mathscr{L}_{GR}}{\partial \Gamma^\alpha_{\nu\mu,\gamma}}\right]_{,\gamma}
R^\alpha_{\nu\varepsilon\mu}
+\frac{1}{2\kappa} \sqrt{-g} g^{\nu\mu} \delta_\alpha^\gamma \left(
R^\alpha_{\nu\varepsilon\mu,\gamma}
\textcolor{red}{+}R^\alpha_{\nu\textcolor{red}{\gamma\varepsilon},\mu}
\textcolor{red}{+}R^\alpha_{\nu\textcolor{red}{\mu\gamma},\varepsilon}
\right)
- \frac{1}{2\kappa} \delta^\gamma_\alpha R^\alpha_{\nu\gamma\mu} \left(\sqrt{-g} \, g^{\nu\mu}\right)_{,\varepsilon}\\
&=\left[\frac{\partial \mathscr{L}_{GR}}{\partial \Gamma^\alpha_{\nu\mu,\gamma}}\right]_{,\gamma}
R^\alpha_{\nu\varepsilon\mu}
-\frac{\partial \mathscr{L}_{GR}}{\partial \Gamma^\alpha_{\nu\mu}}
R^{{\alpha}}_{\nu\varepsilon\mu}
- \frac{1}{2\kappa} \delta^\gamma_\alpha R^\alpha_{\nu\gamma\mu} \left(\sqrt{-g}\,_{,\varepsilon} g^{\nu\mu}+\sqrt{-g} \, {g^{\nu\mu}}_{,\varepsilon}\right)\\
&=\left\{
\left[\frac{\partial \mathscr{L}_{GR}}{\partial \Gamma^\alpha_{\nu\mu,\gamma}}\right]_{,\gamma}-\frac{\partial \mathscr{L}_{GR}}{\partial \Gamma^\alpha_{\nu\mu}} \right\}
R^\alpha_{\nu\varepsilon\mu}
- \frac{1}{2\kappa} \delta^\gamma_\alpha R^\alpha_{\nu\gamma\mu}
\left(
-\frac{1}{2}\sqrt{-g}\, g_{\phi\psi} {g^{\phi\psi}}_{,\varepsilon} g^{\nu\mu}+\sqrt{-g} \, {g^{\nu\mu}}_{,\varepsilon}\right)\\
&=\left\{
\left[\frac{\partial \mathscr{L}_{GR}}{\partial \Gamma^\alpha_{\nu\mu,\gamma}}\right]_{,\gamma}-\frac{\partial \mathscr{L}_{GR}}{\partial \Gamma^\alpha_{\nu\mu}} \right\}
R^\alpha_{\nu\varepsilon\mu}
- \frac{1}{2\kappa} \sqrt{-g}\, \delta^\gamma_\alpha
\left(
-\frac{1}{2} R^\alpha_{\nu\gamma\mu} g_{\phi\psi} {g^{\phi\psi}}_{,\varepsilon} g^{\nu\mu}
+ R^\alpha_{\nu\gamma\mu} {g^{\nu\mu}}_{,\varepsilon}
\right)\\
&=\left\{
\left[\frac{\partial \mathscr{L}_{GR}}{\partial \Gamma^\alpha_{\nu\mu,\gamma}}\right]_{,\gamma}-\frac{\partial \mathscr{L}_{GR}}{\partial \Gamma^\alpha_{\nu\mu}} \right\}
R^\alpha_{\nu\varepsilon\mu}
- \frac{1}{2\kappa} \sqrt{-g}\, \delta^\gamma_\alpha
\left(
-\frac{1}{2}
R^\alpha_{\phi\gamma\psi} g_{\nu\mu} {g^{\nu\mu}}_{,\varepsilon} g^{\phi\psi}
+ R^\alpha_{\nu\gamma\mu} {g^{\nu\mu}}_{,\varepsilon}
\right)\\
&=\left\{
\left[\frac{\partial \mathscr{L}_{GR}}{\partial \Gamma^\alpha_{\nu\mu,\gamma}}\right]_{,\gamma}-\frac{\partial \mathscr{L}_{GR}}{\partial \Gamma^\alpha_{\nu\mu}} \right\}
R^\alpha_{\nu\varepsilon\mu}
- \frac{1}{2\kappa} \sqrt{-g}\, \delta^\gamma_\alpha
\left(
R^\alpha_{\nu\gamma\mu}
-\frac{1}{2} R^\alpha_{\phi\gamma\psi} g_{\nu\mu} g^{\phi\psi}
\right){g^{\nu\mu}}_{,\varepsilon}\\
&=\left\{
\left[\frac{\partial \mathscr{L}_{GR}}{\partial \Gamma^\alpha_{\nu\mu,\gamma}}\right]_{,\gamma}-\frac{\partial \mathscr{L}_{GR}}{\partial \Gamma^\alpha_{\nu\mu}} \right\}
R^\alpha_{\nu\varepsilon\mu}
- \frac{1}{2\kappa} \sqrt{-g}\,
\left(
\delta^\gamma_\alpha R^\alpha_{\nu\gamma\mu}
-\frac{1}{2} R g_{\nu\mu}
\right)
\left(
-g^{\sigma\mu}\Gamma^\nu_{\sigma\varepsilon}
-g^{\nu\sigma}\Gamma^\mu_{\sigma\varepsilon}
+\frac{2}{\mathbb{D}-1}g^{\nu\mu}T_{\varepsilon}
\right)\\
&=\left\{
\left[\frac{\partial \mathscr{L}_{GR}}{\partial \Gamma^\alpha_{\nu\mu,\gamma}}\right]_{,\gamma}-\frac{\partial \mathscr{L}_{GR}}{\partial \Gamma^\alpha_{\nu\mu}} \right\}
R^\alpha_{\nu\varepsilon\mu} \\&\qquad\qquad
- \frac{1}{2\kappa} \sqrt{-g}\,
\left(
-\delta^\gamma_\alpha R^\alpha_{\nu\gamma\mu} g^{\sigma\mu}\Gamma^\nu_{\sigma\varepsilon}
-\delta^\gamma_\alpha R^\alpha_{\nu\gamma\mu} g^{\nu\sigma}\Gamma^\mu_{\sigma\varepsilon}
+\frac{2}{\mathbb{D}-1}\delta^\gamma_\alpha R^\alpha_{\nu\gamma\mu} g^{\nu\mu}T_{\varepsilon}
+\frac{1}{2} R g_{\nu\mu}g^{\sigma\mu}\Gamma^\nu_{\sigma\varepsilon}
+\frac{1}{2} R g_{\nu\mu}g^{\nu\sigma}\Gamma^\mu_{\sigma\varepsilon}
-\frac{1}{2} R g_{\nu\mu}\frac{2}{\mathbb{D}-1}g^{\nu\mu}T_{\varepsilon}
\right)\\
&=\left\{
\left[\frac{\partial \mathscr{L}_{GR}}{\partial \Gamma^\alpha_{\nu\mu,\gamma}}\right]_{,\gamma}-\frac{\partial \mathscr{L}_{GR}}{\partial \Gamma^\alpha_{\nu\mu}} \right\}
R^\alpha_{\nu\varepsilon\mu} \\&\qquad\qquad
- \frac{1}{2\kappa} \sqrt{-g}\,
\left(
-\delta^\gamma_\alpha R^\alpha_{\nu\gamma\mu} g^{\sigma\mu}\Gamma^\nu_{\sigma\varepsilon}
-\delta^\gamma_\alpha R^\alpha_{\nu\gamma\mu} g^{\nu\sigma}\Gamma^\mu_{\sigma\varepsilon}
+\frac{2}{\mathbb{D}-1}R T_{\varepsilon}
+\frac{1}{2}R \Gamma^\sigma_{\sigma\varepsilon}
+\frac{1}{2}R \Gamma^\sigma_{\sigma\varepsilon}
-\frac{\mathbb{D}}{\mathbb{D}-1} R T_{\varepsilon}
\right)\\
\end{align*}
\end{adjustwidth}
\begin{adjustwidth}{-2.55cm}{-1cm}
\begin{align*}
&\left(t_{GR}\right)^\gamma_{\varepsilon,\gamma}\\
&=\left[\frac{\partial \mathscr{L}_{GR}}{\partial \Gamma^\alpha_{\nu\mu,\gamma}}\right]_{,\gamma}
R^\alpha_{\nu\varepsilon\mu}
+\frac{1}{2\kappa} \sqrt{-g} g^{\nu\mu} \delta_\alpha^\gamma \left(
R^\alpha_{\nu\varepsilon\mu,\gamma}
\textcolor{red}{+}R^\alpha_{\nu\textcolor{red}{\gamma\varepsilon},\mu}
\textcolor{red}{+}R^\alpha_{\nu\textcolor{red}{\mu\gamma},\varepsilon}
\right)
- \frac{1}{2\kappa} \delta^\gamma_\alpha R^\alpha_{\nu\gamma\mu} \left(\sqrt{-g} \, g^{\nu\mu}\right)_{,\varepsilon}\\
&=\left[\frac{\partial \mathscr{L}_{GR}}{\partial \Gamma^\alpha_{\nu\mu,\gamma}}\right]_{,\gamma}
R^\alpha_{\nu\varepsilon\mu}
-\frac{\partial \mathscr{L}_{GR}}{\partial \Gamma^\alpha_{\nu\mu}}
R^{{\alpha}}_{\nu\varepsilon\mu}
- \frac{1}{2\kappa} \delta^\gamma_\alpha R^\alpha_{\nu\gamma\mu} \left(\sqrt{-g} \, {g^{\nu\mu}}_{,\varepsilon}
+\sqrt{-g}\,_{,\varepsilon} g^{\nu\mu}\right)\\
&=\left\{
\left[\frac{\partial \mathscr{L}_{GR}}{\partial \Gamma^\alpha_{\nu\mu,\gamma}}\right]_{,\gamma}-\frac{\partial \mathscr{L}_{GR}}{\partial \Gamma^\alpha_{\nu\mu}} \right\}
R^\alpha_{\nu\varepsilon\mu}
- \frac{1}{2\kappa} \delta^\gamma_\alpha R^\alpha_{\nu\gamma\mu}
\left(
\sqrt{-g} \, {g^{\nu\mu}}_{,\varepsilon}-\frac{1}{2}\sqrt{-g}\, g_{\phi\psi} {g^{\phi\psi}}_{,\varepsilon} g^{\nu\mu}
\right)
\\
&=\left\{
\left[\frac{\partial \mathscr{L}_{GR}}{\partial \Gamma^\alpha_{\nu\mu,\gamma}}\right]_{,\gamma}-\frac{\partial \mathscr{L}_{GR}}{\partial \Gamma^\alpha_{\nu\mu}} \right\}
R^\alpha_{\nu\varepsilon\mu}
- \frac{1}{2\kappa} \sqrt{-g} \,
\left(
\delta^\gamma_\alpha R^\alpha_{\nu\gamma\mu} {g^{\nu\mu}}_{,\varepsilon}
-\frac{1}{2} \delta^\gamma_\alpha R^\alpha_{\nu\gamma\mu} g_{\phi\psi} {g^{\phi\psi}}_{,\varepsilon} g^{\nu\mu}
\right)
\\
&=\left\{
\left[\frac{\partial \mathscr{L}_{GR}}{\partial \Gamma^\alpha_{\nu\mu,\gamma}}\right]_{,\gamma}-\frac{\partial \mathscr{L}_{GR}}{\partial \Gamma^\alpha_{\nu\mu}} \right\}
R^\alpha_{\nu\varepsilon\mu}
- \frac{1}{2\kappa} \sqrt{-g} \,
\left(
R_{\nu\mu}{g^{\nu\mu}}_{,\varepsilon}
-\frac{1}{2} R\, g_{\phi\psi}{g^{\phi\psi}}_{,\varepsilon}
\right)
\\
&=\left\{
\left[\frac{\partial \mathscr{L}_{GR}}{\partial \Gamma^\alpha_{\nu\mu,\gamma}}\right]_{,\gamma}-\frac{\partial \mathscr{L}_{GR}}{\partial \Gamma^\alpha_{\nu\mu}} \right\}
R^\alpha_{\nu\varepsilon\mu}
- \frac{1}{2\kappa} \sqrt{-g} \,
\left(
R_{\nu\mu}
-\frac{1}{2} R\, g_{\nu\mu}
\right) {g^{\nu\mu}}_{,\varepsilon}
\\
&=\left\{
\left[\frac{\partial \mathscr{L}_{GR}}{\partial \Gamma^\alpha_{\nu\mu,\gamma}}\right]_{,\gamma}-\frac{\partial \mathscr{L}_{GR}}{\partial \Gamma^\alpha_{\nu\mu}} \right\}
R^\alpha_{\nu\varepsilon\mu}
- \frac{1}{2\kappa} \sqrt{-g} \,
\left(
\delta^\sigma_\nu R_{\sigma\mu}
-\frac{1}{2} R\, g_{\nu\mu}
\right) {g^{\nu\mu}}_{,\varepsilon}
\\
&=\left\{
\left[\frac{\partial \mathscr{L}_{GR}}{\partial \Gamma^\alpha_{\nu\mu,\gamma}}\right]_{,\gamma}-\frac{\partial \mathscr{L}_{GR}}{\partial \Gamma^\alpha_{\nu\mu}} \right\}
R^\alpha_{\nu\varepsilon\mu}
- \frac{1}{2\kappa} \sqrt{-g} \,
\left(
g^{\sigma\gamma} g_{\gamma\nu} R_{\sigma\mu}
-\frac{1}{2} R\,\delta^\gamma_\mu g_{\gamma\nu}
\right) {g^{\nu\mu}}_{,\varepsilon}
\\
&=\left\{
\left[\frac{\partial \mathscr{L}_{GR}}{\partial \Gamma^\alpha_{\nu\mu,\gamma}}\right]_{,\gamma}-\frac{\partial \mathscr{L}_{GR}}{\partial \Gamma^\alpha_{\nu\mu}} \right\}
R^\alpha_{\nu\varepsilon\mu}
- \frac{1}{2\kappa} \sqrt{-g} \,
\left(
g^{\sigma\gamma} R_{\sigma\mu}
-\frac{1}{2} \delta^\gamma_\mu R
\right)g_{\gamma\nu}{g^{\nu\mu}}_{,\varepsilon}
\\
&=\left\{
\left[\frac{\partial \mathscr{L}_{GR}}{\partial \Gamma^\alpha_{\nu\mu,\gamma}}\right]_{,\gamma}-\frac{\partial \mathscr{L}_{GR}}{\partial \Gamma^\alpha_{\nu\mu}} \right\}
R^\alpha_{\nu\varepsilon\mu}
- \frac{1}{2\kappa} \sqrt{-g} \,
\left(
\textcolor{red}{\frac{1}{2} g^{\sigma\beta} R^\gamma_{\sigma\mu\beta}}
\textcolor{red}{-\frac{1}{2} g^{\sigma\beta} R^\gamma_{\sigma\mu\beta}}
+ g^{\sigma\gamma} R_{\sigma\mu}
-\frac{1}{2} \delta^\gamma_\mu R
\right)g_{\gamma\nu}{g^{\nu\mu}}_{,\varepsilon}
\\
&=\left\{
\left[\frac{\partial \mathscr{L}_{GR}}{\partial \Gamma^\alpha_{\nu\mu,\gamma}}\right]_{,\gamma}-\frac{\partial \mathscr{L}_{GR}}{\partial \Gamma^\alpha_{\nu\mu}} \right\}
R^\alpha_{\nu\varepsilon\mu}
-\frac{1}{2} \frac{1}{2\kappa} \sqrt{-g} \,
\left(
g^{\sigma\beta} R^\gamma_{\sigma\mu\beta}
+ g^{\sigma\gamma} R_{\sigma\mu}
- \delta^\gamma_\mu R
\right)g_{\gamma\nu}{g^{\nu\mu}}_{,\varepsilon}
-\frac{1}{2} \frac{1}{2\kappa} \sqrt{-g} \,
\left(
- g^{\sigma\beta} R^\gamma_{\sigma\mu\beta}
+ g^{\sigma\gamma} R_{\sigma\mu}
\right)g_{\gamma\nu}{g^{\nu\mu}}_{,\varepsilon}
\\
&=\left\{
\left[\frac{\partial \mathscr{L}_{GR}}{\partial \Gamma^\alpha_{\nu\mu,\gamma}}\right]_{,\gamma}-\frac{\partial \mathscr{L}_{GR}}{\partial \Gamma^\alpha_{\nu\mu}} \right\}
R^\alpha_{\nu\varepsilon\mu}
-\frac{1}{2}
t^\gamma_\mu
g_{\gamma\nu}{g^{\nu\mu}}_{,\varepsilon}
-\frac{1}{2} \frac{1}{2\kappa} \sqrt{-g} \,
\left(
- g^{\sigma\beta} R^\gamma_{\sigma\mu\beta}
+ g^{\sigma\gamma} R_{\sigma\mu}
\right)g_{\gamma\nu}{g^{\nu\mu}}_{,\varepsilon}
\\
\\
\end{align*}
\end{adjustwidth}
\begin{adjustwidth}{-2.55cm}{-1cm}
\begin{align*}
&\left(t_{GR}\right)^\gamma_{\varepsilon,\gamma}\\
&=\left[\frac{\partial \mathscr{L}_{GR}}{\partial \Gamma^\alpha_{\nu\mu,\gamma}}\right]_{,\gamma}
R^\alpha_{\nu\varepsilon\mu}
+\frac{1}{2\kappa} \sqrt{-g} g^{\nu\mu} \delta_\alpha^\gamma \left(
R^\alpha_{\nu\varepsilon\mu,\gamma}
\textcolor{red}{+}R^\alpha_{\nu\textcolor{red}{\gamma\varepsilon},\mu}
\textcolor{red}{+}R^\alpha_{\nu\textcolor{red}{\mu\gamma},\varepsilon}
\right)
- \frac{1}{2\kappa} \delta^\gamma_\alpha R^\alpha_{\nu\gamma\mu} \left(\sqrt{-g} \, g^{\nu\mu}\right)_{,\varepsilon}\\
&=\left[\frac{\partial \mathscr{L}_{GR}}{\partial \Gamma^\alpha_{\nu\mu,\gamma}}\right]_{,\gamma}
R^\alpha_{\nu\varepsilon\mu}
-\frac{\partial \mathscr{L}_{GR}}{\partial \Gamma^\alpha_{\nu\mu}}
R^{{\alpha}}_{\nu\varepsilon\mu}
- \frac{1}{2\kappa} \delta^\gamma_\alpha R^\alpha_{\nu\gamma\mu} \left(\sqrt{-g} \, {g^{\nu\mu}}_{,\varepsilon}
+\sqrt{-g}\,_{,\varepsilon} g^{\nu\mu}\right)\\
&=\left\{
\left[\frac{\partial \mathscr{L}_{GR}}{\partial \Gamma^\alpha_{\nu\mu,\gamma}}\right]_{,\gamma}-\frac{\partial \mathscr{L}_{GR}}{\partial \Gamma^\alpha_{\nu\mu}} \right\}
R^\alpha_{\nu\varepsilon\mu}
- \frac{1}{2\kappa} \delta^\gamma_\alpha R^\alpha_{\nu\gamma\mu}
\left(
\sqrt{-g} \, {g^{\nu\mu}}_{,\varepsilon}-\frac{1}{2}\sqrt{-g}\, g_{\phi\psi} {g^{\phi\psi}}_{,\varepsilon} g^{\nu\mu}
\right)
\\
&=\left\{
\left[\frac{\partial \mathscr{L}_{GR}}{\partial \Gamma^\alpha_{\nu\mu,\gamma}}\right]_{,\gamma}-\frac{\partial \mathscr{L}_{GR}}{\partial \Gamma^\alpha_{\nu\mu}} \right\}
R^\alpha_{\nu\varepsilon\mu}
- \frac{1}{2\kappa} \sqrt{-g} \,
\left(
\delta^\gamma_\alpha R^\alpha_{\nu\gamma\mu} {g^{\nu\mu}}_{,\varepsilon}
-\frac{1}{2} \delta^\gamma_\alpha R^\alpha_{\nu\gamma\mu} g_{\phi\psi} {g^{\phi\psi}}_{,\varepsilon} g^{\nu\mu}
\right)
\\
&=\left\{
\left[\frac{\partial \mathscr{L}_{GR}}{\partial \Gamma^\alpha_{\nu\mu,\gamma}}\right]_{,\gamma}-\frac{\partial \mathscr{L}_{GR}}{\partial \Gamma^\alpha_{\nu\mu}} \right\}
R^\alpha_{\nu\varepsilon\mu}
- \frac{1}{2\kappa} \sqrt{-g} \,
\left(
R_{\nu\mu}{g^{\nu\mu}}_{,\varepsilon}
-\frac{1}{2} R\, g_{\phi\psi}{g^{\phi\psi}}_{,\varepsilon}
\right)
\\
&=\left\{
\left[\frac{\partial \mathscr{L}_{GR}}{\partial \Gamma^\alpha_{\nu\mu,\gamma}}\right]_{,\gamma}-\frac{\partial \mathscr{L}_{GR}}{\partial \Gamma^\alpha_{\nu\mu}} \right\}
R^\alpha_{\nu\varepsilon\mu}
- \frac{1}{2\kappa} \sqrt{-g} \,
\left(
R_{\nu\mu}
-\frac{1}{2} R\, g_{\nu\mu}
\right) {g^{\nu\mu}}_{,\varepsilon}
\\
&=\left\{
\left[\frac{\partial \mathscr{L}_{GR}}{\partial \Gamma^\alpha_{\nu\mu,\gamma}}\right]_{,\gamma}-\frac{\partial \mathscr{L}_{GR}}{\partial \Gamma^\alpha_{\nu\mu}} \right\}
R^\alpha_{\nu\varepsilon\mu}
- \frac{1}{2\kappa} \sqrt{-g} \,
\left(
R_{\nu\mu}
-\frac{1}{2} R\, g_{\nu\mu}
\right)
\left(
-g^{\sigma\mu}\Gamma^\nu_{\sigma\varepsilon}
-g^{\nu\sigma}\Gamma^\mu_{\sigma\varepsilon}
+\frac{2}{\mathbb{D}-1} {g^{\nu\mu}} T_{\varepsilon}
\right)
\\
&=\left\{
\left[\frac{\partial \mathscr{L}_{GR}}{\partial \Gamma^\alpha_{\nu\mu,\gamma}}\right]_{,\gamma}-\frac{\partial \mathscr{L}_{GR}}{\partial \Gamma^\alpha_{\nu\mu}} \right\}
R^\alpha_{\nu\varepsilon\mu}
- \frac{1}{2\kappa} \sqrt{-g} \,
\left(
R_{\nu\mu}
-\frac{1}{2} R\, g_{\nu\mu}
\right)
\left(
-g^{\sigma\mu}\Gamma^\nu_{\sigma\varepsilon}
-g^{\nu\sigma}\Gamma^\mu_{\sigma\varepsilon}
\right)
- \frac{1}{\kappa} \sqrt{-g} \,
\left(
R_{\nu\mu}
-\frac{1}{2} R\, g_{\nu\mu}
\right)
\frac{1}{\mathbb{D}-1} {g^{\nu\mu}} T_{\varepsilon}
\\
&=\left\{
\left[\frac{\partial \mathscr{L}_{GR}}{\partial \Gamma^\alpha_{\nu\mu,\gamma}}\right]_{,\gamma}-\frac{\partial \mathscr{L}_{GR}}{\partial \Gamma^\alpha_{\nu\mu}} \right\}
R^\alpha_{\nu\varepsilon\mu}
+ \frac{1}{2\kappa} \sqrt{-g} \,
\left(
R_{\nu\mu}
+R_{\mu\nu}
- R\, g_{\nu\mu}
\right)
g^{\sigma\mu}\Gamma^\nu_{\sigma\varepsilon}
- \frac{1}{\kappa} \sqrt{-g} \,
\left(
R
-\frac{1}{2} \mathbb{D} R\,
\right)
\frac{1}{\mathbb{D}-1} T_{\varepsilon}
\end{align*}
\end{adjustwidth}
\section{Direct Variation}
\begin{align*}
F^d_{\varepsilon\gamma}=A^d_{\gamma,\varepsilon}-A^d_{\varepsilon,\gamma}+f^d_{bc}A^b_\varepsilon A^c_\gamma
\end{align*}
\begin{align*}
\frac{\delta}{\delta A^a_\nu}
&=\frac{\delta F^d_{\varepsilon\gamma}}{\delta A^a_\nu}\frac{\delta}{\delta F^d_{\varepsilon\gamma}}
=\frac{\delta }{\delta A^a_\nu}
\left(
A^d_{\gamma,\varepsilon}-A^d_{\varepsilon,\gamma}+f^d_{bc}A^b_\varepsilon A^c_\gamma
\right)
\frac{\delta}{\delta F^d_{\varepsilon\gamma}}\\
&=
\left(
f^d_{bc}\delta^\nu_\varepsilon\delta^b_a A^c_\gamma
+f^d_{bc}A^b_\varepsilon\delta^\nu_\gamma\delta^c_a
\right)
\frac{\delta}{\delta F^d_{\varepsilon\gamma}}\\
&=
f^d_{ac} A^c_\gamma
\frac{\delta}{\delta F^d_{\nu\gamma}}
+f^d_{ba}A^b_\varepsilon
\frac{\delta}{\delta F^d_{\varepsilon\nu}}\\
&=
f^d_{ac} A^c_\gamma
\frac{\delta}{\delta F^d_{\nu\gamma}}
+f^d_{ab}A^b_\varepsilon
\frac{\delta}{\delta F^d_{\nu\varepsilon}}
\\
&=
f^d_{ac} A^c_\mu*2
\frac{\delta}{\delta F^d_{\nu\mu}}
\end{align*}
\begin{align*}
\frac{\delta}{\delta A^a_{\nu,\mu}}
&=\frac{\delta F^d_{\varepsilon\gamma}}{\delta A^a_{\nu,\mu}}\frac{\delta}{\delta F^d_{\varepsilon\gamma}}
=\frac{\delta }{\delta A^a_{\nu,\mu}}
\left(
A^d_{\gamma,\varepsilon}-A^d_{\varepsilon,\gamma}+f^d_{bc}A^b_\varepsilon A^c_\gamma
\right)
\frac{\delta}{\delta F^d_{\varepsilon\gamma}}\\
&=
\left(
\delta^\nu_\gamma\delta^\mu_\varepsilon\delta^d_a-\delta^\nu_\varepsilon\delta^\mu_\gamma\delta^d_a
\right)
\frac{\delta}{\delta F^d_{\varepsilon\gamma}}\\
&=
\frac{\delta}{\delta F^a_{\mu\nu}}
-\frac{\delta}{\delta F^d_{\nu\mu}}\\
&=
-2\frac{\delta}{\delta F^a_{\nu\mu}}
=-\frac{\delta}{\delta A^a_{\mu,\nu}}
\end{align*}
\begin{align*}
\frac{\delta}{\delta A^a_{\nu}}=
f^d_{ac} A^c_\mu*2
\frac{\delta}{\delta F^d_{\nu\mu}}
=-f^d_{ac} A^c_\mu\frac{\delta}{\delta A^d_{\nu,\mu}}
\end{align*}
\begin{align*}
A^a_\eta \frac{\delta}{\delta A^a_{\nu}}
&=-f^d_{ac} A^a_\eta A^c_\mu\frac{\delta}{\delta A^d_{\nu,\mu}}\\
&=f^a_{dc} A^d_\eta A^c_\mu\frac{\delta}{\delta A^a_{\mu,\nu}}
\end{align*}
\begin{align*}
\partial_\mu\left(\frac{\delta}{\delta A^a_{\nu,\mu}}\right)-\frac{\delta}{\delta A^a_{\nu}}
&=\partial_\mu\left(2\frac{\delta}{\delta F^a_{\mu\nu}}\right)+f^d_{ac} A^c_\mu*2
\frac{\delta}{\delta F^d_{\mu\nu}}\\
&=2\left(\delta^d_a\partial_\mu+f^d_{ac} A^c_\mu\right)\frac{\delta}{\delta F^d_{\mu\nu}}\\
&=2\left(\delta^d_a\partial_\mu-f^d_{ca} A^c_\mu\right)\frac{\delta}{\delta F^d_{\mu\nu}}
\end{align*}
\begin{align*}
\left(t_{YM}\right)^\mu_{\gamma,\mu}
&=\left[ \frac{\partial \mathscr{L}_{YM}}{\partial B^a_{\nu,\mu}} G^a_{\gamma\nu} - \delta^\mu_\gamma \mathscr{L}_{YM} \right]_{,\mu}\\
&=\left\{ \left[ \frac{\partial \mathscr{L}_{YM}}{\partial B^a_{\nu,\mu}} \right]_{,\mu}
-\frac{\partial \mathscr{L}_{YM}}{\partial( B^a_\nu)} \right\}G^a_{\gamma\nu}
+ \left( t_{YM}\right)^\eta_\mu \Gamma^\mu_{\eta\gamma}\\\\
\to
\nabla_{\mu}
\left[ \frac{\partial \mathscr{L}_{YM}}{\partial G^a_{\mu\nu}} G^a_{\gamma\nu}
-\frac{1}{2} \delta^\mu_\gamma \mathscr{L}_{YM} \right]
&=
\left[
\left(\delta^d_a\partial_\mu-f^d_{ca} A^c_\mu\right)\frac{\partial \mathscr{L}_{YM}}{\partial G^d_{\mu\nu}}
\right]
G^a_{\gamma\nu}
\end{align*}
\section{Self-dual}
\begin{align*}
F_{\alpha\beta}&=g_{\alpha\gamma}g_{\beta\sigma}\, \frac{\varepsilon^{\gamma\sigma\mu\nu}}{\sqrt{-g}}F_{\mu\nu}\\
\sqrt{-g}\,g^{\alpha\gamma}g^{\beta\sigma}F_{\alpha\beta}&=\varepsilon^{\gamma\sigma\mu\nu}F_{\mu\nu}\\
\left(\sqrt{-g}\,g^{\alpha\gamma}g^{\beta\sigma}F_{\alpha\beta}\right)_{;\sigma}&=\left(\varepsilon^{\gamma\sigma\mu\nu}F_{\mu\nu}\right)_{;\sigma}\\
\left(\sqrt{-g}\,F^{\gamma\sigma}\right)_{;\sigma}&=
\left(\sqrt{-g}\,F^{\gamma\sigma}\right)_{,\sigma}=
\varepsilon^{\gamma\sigma\mu\nu}F_{\mu\nu;\sigma}
\end{align*}
\begin{align*}
\left(t_{GR}\right)^\gamma_{\varepsilon;\gamma}
&=\left[\frac{\partial \mathscr{L}_{GR}}{\partial \omega^b_{c\mu,\gamma}}
\mathscr{R}^b_{c\varepsilon\mu}
- \delta^\gamma_\varepsilon \mathscr{L}_{GR}\right]_{;\gamma} \\
&=\left[\frac{1}{2\kappa} \left(g^{\beta\mu}R^\gamma_{\beta\varepsilon\mu}+g^{\beta\gamma}R_{\beta\varepsilon}-\delta^\gamma_\varepsilon R \right)\sqrt{-g}\right]_{;\gamma}\\
&=\frac{1}{2\kappa} \left(
g^{\beta\mu}R^\gamma_{\beta\varepsilon\mu;\gamma}
+g^{\beta\gamma}R_{\beta\varepsilon;\gamma}
-\delta^\gamma_\varepsilon R_{;\gamma} \right)\sqrt{-g}
\end{align*}
\begin{align*}
R^\phi_{\psi\mu\nu;\sigma}
+R^\phi_{\psi\nu\sigma;\mu}
+R^\phi_{\psi\sigma\mu;\nu}
&=0\\
\delta_\phi^\sigma R^\phi_{\psi\mu\nu;\sigma}
+\delta_\phi^\sigma R^\phi_{\psi\nu\sigma;\mu}
+\delta_\phi^\sigma R^\phi_{\psi\sigma\mu;\nu}
&=0\\
R^\sigma_{\psi\mu\nu;\sigma}
-R_{\psi\nu;\mu}
+R_{\psi\mu;\nu}
&=0\\
g^{\psi\nu} R^\sigma_{\psi\mu\nu;\sigma}
-g^{\psi\nu}R_{\psi\nu;\mu}
+g^{\psi\nu}R_{\psi\mu;\nu}
&=0\\
g^{\psi\nu} R^\sigma_{\psi\mu\nu;\sigma}
-\delta^\sigma_\mu R_{;\sigma}
+g^{\psi\sigma}R_{\psi\mu;\sigma}
&=0
\end{align*}
\begin{align*}
R^\phi_{\psi\mu\nu;\sigma}
+R^\phi_{\psi\nu\sigma;\mu}
+R^\phi_{\psi\sigma\mu;\nu}
&=0\\
g^{\psi\nu}\delta_\phi^\sigma \left(R^\phi_{\psi\mu\nu;\sigma}
+R^\phi_{\psi\nu\sigma;\mu}
+R^\phi_{\psi\sigma\mu;\nu}\right)
&=0\\
g^{\psi\nu}g^{\sigma\xi}g_{\xi\phi} \left(R^\phi_{\psi\mu\nu;\sigma}
+R^\phi_{\psi\nu\sigma;\mu}
+R^\phi_{\psi\sigma\mu;\nu}\right)
&=0\\
g^{\psi\nu}g_{\xi\phi} \left(R^\phi_{\psi\mu\nu;\sigma}
+R^\phi_{\psi\nu\sigma;\mu}
+R^\phi_{\psi\sigma\mu;\nu}\right)
&=0\\
\end{align*}
\begin{align*}
\varepsilon^{\gamma\sigma\mu\nu}R^\phi_{\psi\mu\nu}&\\
g^{\psi\nu}\delta_\phi^\sigma \varepsilon^{\gamma\sigma\mu\nu}R^\phi_{\psi\mu\nu}=0&=g^{\psi\nu}\delta_\phi^\sigma\left(\sqrt{-g}\,g^{\alpha\gamma}g^{\beta\sigma}R^\phi_{\psi\alpha\beta}\right)_{;\sigma}\\
&=g^{\psi\nu}\delta_\phi^\sigma \sqrt{-g}\,g^{\alpha\gamma}g^{\beta\sigma}R^\phi_{\psi\alpha\beta;\sigma}\\
\end{align*}
\section{Summary}
The natural symmetrical, gauge-invariant canonical energy-momentum tensor for the abelian gauge field is derived. This derivation does not depend on flat spacetime geometry, hence is background independent. This method has potential to cover the non-abelian field theory and general relativity.
\printbibliography
\newpage
\section{Supplementary Derivation}
\subsection{Abelian Case (Electromagnetic Field)}
\noindent \textbf{Eq.\eqref{eq:ab_lag}}
\begin{align*}
\Delta \mathscr{L}_{EM} &= \mathscr{L}_{EM}[\tilde{A}_\nu(\tilde{x}^\gamma), \tilde{A}_{\nu,\mu}(\tilde{x}^\gamma), \tilde{x}^\gamma] - \mathscr{L}_{EM}[A_\nu(x^\gamma), A_{\nu,\mu}(x^\gamma), x^\gamma] \\
&= \mathscr{L}_{EM}[\tilde{A}_\nu(\tilde{x}^\gamma), \tilde{A}_{\nu,\mu}(\tilde{x}^\gamma), \tilde{x}^\gamma] - \mathscr{L}_{EM}[A_\nu(\tilde{x}^\gamma), A_{\nu,\mu}(\tilde{x}^\gamma), \tilde{x}^\gamma] + \mathscr{L}_{EM}[A_\nu(\tilde{x}^\gamma), A_{\nu,\mu}(\tilde{x}^\gamma), \tilde{x}^\gamma] - \mathscr{L}_{EM}[A_\nu(x^\gamma), A_{\nu,\mu}(x^\gamma), x^\gamma]\\
&= \left[ \frac{\partial \mathscr{L}_{EM}}{\partial A_\nu} \delta A_\nu + \frac{\partial \mathscr{L}_{EM}}{\partial (\partial_\mu A_\nu)} \delta (\partial_\mu A_\nu) \right] (\tilde{x}^\gamma) + \left[ \mathscr{L}_{EM}_{, \gamma} \delta x^\gamma \right] (x^\gamma) \\
& = \left[ \frac{\partial \mathscr{L}_{EM}}{\partial A_\nu} \delta A_\nu + \frac{\partial \mathscr{L}_{EM}}{\partial (\partial_\mu A_\nu)} \delta (\partial_\mu A_\nu) \right] (x^\gamma) + O(\delta^2) + \left[ \mathscr{L}_{EM}_{, \gamma} \delta x^\gamma \right] (x^\gamma)
\end{align*}
\\
\noindent \textbf{Eq.\eqref{eq:Delta S_ab}}
\begin{align*}
\Delta S &= \int d^4x \cdot \underbracket[0.4pt][0pt]{\mathscr{L}_{EM} \delta x^\gamma_{,\gamma}}_{(A)} + \int d^4x \left[ \frac{\partial \mathscr{L}_{EM}}{\partial A_\nu}\delta A_\nu + \frac{\partial \mathscr{L}_{EM}}{\partial(\partial_\mu A_\nu)}\delta(\partial_\mu A_\nu) + \underbracket[0.4pt][0pt]{\mathscr{L}_{EM}_{,\gamma} \delta x^\gamma}_{(B)} \right] \\
&= \int d^4 x \cdot \left[ \frac{\partial \mathscr{L}_{EM}}{\partial A_\nu}\delta A_\nu + \frac{\partial \mathscr{L}_{EM}}{\partial(\partial_\mu A_\nu)}\partial_\mu(\delta A_\nu) + \underbracket[0.4pt][0pt]{(\mathscr{L}_{EM} \delta x^\gamma)_{,\gamma}}_{(A)+(B)} \right]\\
&= \int \left[ \frac{\partial \mathscr{L}_{EM}}{\partial A_\nu} - \partial_\mu\left(\frac{\partial\mathscr{L}_{EM}}{\partial(\partial_\mu A_\nu)}\right) \right] \delta A_\nu d^4 x + \int \left[ \partial_\mu\left(\frac{\partial \mathscr{L}_{EM}}{\partial (\partial_\mu A_\nu)}\delta A_\nu\right) + (\mathscr{L}_{EM} \delta x^\gamma)_{,\gamma}\right] d^4 x
\end{align*}
\noindent \textbf{Eq.\eqref{eq:ab_partial}}
\begin{align*}
\frac{\partial \mathscr{L}_{EM}}{\partial(\partial_\mu A_\nu)} &= \frac{\partial}{\partial(\partial_\mu A_\nu)} \left( -\frac{1}{16\pi c} g^{\alpha\rho}g^{\beta\sigma}F_{\alpha\beta}F_{\rho\sigma}\sqrt{-g} \right) \\
&= -\frac{1}{16\pi c} g^{\alpha\rho}g^{\beta\sigma}\sqrt{-g} \frac{\partial}{\partial(\partial_\mu A_\nu)} (F_{\alpha\beta}F_{\rho\sigma}) \\
&= -\frac{1}{16\pi c} g^{\alpha\rho}g^{\beta\sigma}\sqrt{-g} \left[ \frac{\partial F_{\alpha\beta}}{\partial(\partial_\mu A_\nu)}F_{\rho\sigma} + F_{\alpha\beta}\frac{\partial F_{\rho\sigma}}{\partial(\partial_\mu A_\nu)} \right] \\
&= -\frac{1}{16\pi c} g^{\alpha\rho}g^{\beta\sigma}\sqrt{-g} \left[ (\delta^\mu_\alpha \delta^\nu_\beta - \delta^\nu_\alpha \delta^\mu_\beta)F_{\rho\sigma} + F_{\alpha\beta}(\delta^\mu_\rho \delta^\nu_\sigma - \delta^\nu_\rho \delta^\mu_\sigma) \right] \\
&= -\frac{1}{16\pi c} \sqrt{-g} \left[ (g^{\mu\alpha}g^{\nu\beta} - g^{\nu\alpha}g^{\mu\beta})F_{\alpha\beta} + F_{\alpha\beta}(g^{\mu\alpha}g^{\nu\beta} - g^{\nu\alpha}g^{\mu\beta}) \right] \\
&= -\frac{1}{8\pi c} \sqrt{-g} \left[ (g^{\mu\alpha}g^{\nu\beta} - g^{\nu\alpha}g^{\mu\beta})F_{\alpha\beta} \right]\\
&= -\frac{1}{8\pi c} \sqrt{-g} \left[ g^{\mu\alpha}g^{\nu\beta}F_{\alpha\beta} - g^{\nu\alpha}g^{\mu\beta}F_{\alpha\beta} \right]\\
&= -\frac{1}{8\pi c} \sqrt{-g} \left[ g^{\mu\alpha}g^{\nu\beta}F_{\alpha\beta} - g^{\nu\textcolor{red}{\beta}}g^{\mu\textcolor{red}{\alpha}}F_{\textcolor{red}{\beta\alpha}} \right]
\end{align*}
\noindent Using the antisymmetric property: $F_{\beta\alpha} = -F_{\alpha\beta}$, we get
\begin{align*}
\frac{\partial \mathscr{L}_{EM}}{\partial(\partial_\mu A_\nu)}
&= -\frac{1}{4\pi c} g^{\mu\alpha}g^{\nu\beta} \sqrt{-g} F_{\alpha\beta}
\end{align*}
\noindent \textbf{Eq.\eqref{eq:anti_ab}}
\begin{align*}
\left[ \frac{\partial \mathscr{L}_{EM}}{\partial (\partial_\mu A_\nu)} A_\gamma \delta x^\gamma\right]_{,\nu \mu} &= \left[ -\frac{1}{4\pi c} g^{\mu\alpha}g^{\nu\beta} \sqrt{-g} F_{\alpha\beta} A_\gamma \delta x^\gamma \right]_{,\nu \mu} \\
&= \left[ -\frac{1}{8\pi c} g^{\mu\alpha}g^{\nu\beta} \sqrt{-g} F_{\alpha\beta} A_\gamma \delta x^\gamma \right]_{,\nu \mu} + \left[ -\frac{1}{8\pi c} g^{\mu\alpha}g^{\nu\beta} \sqrt{-g} F_{\alpha\beta} A_\gamma \delta x^\gamma \right]_{,\nu \mu} \\
&= \left[ -\frac{1}{8\pi c} g^{\mu\alpha}g^{\nu\beta} \sqrt{-g} F_{\alpha\beta} A_\gamma \delta x^\gamma \right]_{,\nu \mu} + \left[ -\frac{1}{8\pi c} g^{\textcolor{red}{\nu}\textcolor{blue}{\beta}}g^{\textcolor{red}{\mu}\textcolor{blue}{\alpha}} \sqrt{-g} F_{\textcolor{blue}{\beta\alpha}} A_\gamma \delta x^\gamma \right]_{,\textcolor{red}{ \mu\nu}} \\
&= \left[ -\frac{1}{8\pi c} g^{\mu\alpha}g^{\nu\beta} \sqrt{-g} F_{\alpha\beta} A_\gamma \delta x^\gamma \right]_{,\nu \mu} \textcolor{red}{-} \left[ -\frac{1}{8\pi c} g^{\mu\alpha}g^{\nu\beta} \sqrt{-g} F_{\textcolor{red}{\alpha\beta}} A_\gamma \delta x^\gamma \right]_{,\nu \mu} \\
&=0
\end{align*}
\noindent \textbf{Eq.\eqref{eq:*2_ab}}\\
\noindent The EoM is :
\begin{align*}
\left( \frac{\partial \mathscr{L}_{EM}}{\partial (\partial_\mu A_\nu)} \right)_{,\mu} =\frac{\partial \mathscr{L}_{EM}}{\partial A_\nu}
\end{align*}
\noindent
However, in free Abelian field case, LHS is
\begin{align*}
\frac{\partial \mathscr{L}_{EM}}{\partial A_\nu}=0
\end{align*}
\noindent Hence
\begin{align} \label{eq:ab=0}
\left( \frac{\partial \mathscr{L}_{EM}}{\partial (\partial_\mu A_\nu)} \right)_{,\mu} =0 \left(= \frac{\partial \mathscr{L}_{EM}}{\partial A_\nu} \right)
\end{align}.
\noindent On the other hand, by Eq.\eqref{eq:ab_partial}, we will derive
\begin{align} \label{ab_SWAP}
\frac{\partial \mathscr{L}_{EM}}{\partial(\partial_\nu A_\mu)}
&=-\frac{1}{4\pi c} g^{\nu{\alpha}} g^{\mu{\beta}}\sqrt{-g} F_{{\alpha\beta}}\nonumber=-\left[-\frac{1}{4\pi c}g^{\mu{\beta}} g^{\nu{\alpha}} \sqrt{-g} F_{{\beta\alpha}}\right]\nonumber\\
&=-\left[-\frac{1}{4\pi c}g^{\mu\textcolor{red}{\alpha}} g^{\nu\textcolor{red}{\beta}} \sqrt{-g} F_{{\textcolor{red}{\alpha\beta}}}\right]
\underbrace{=}_{Eq.\eqref{eq:ab_partial}}-\frac{\partial \mathscr{L}_{EM}}{\partial(\partial_\mu A_\nu)}
\end{align}
\noindent Thus \((*2)\) is
\begin{align*}
\underbracket[0.4pt][0pt]{ \left( \frac{\partial \mathscr{L}_{EM}}{ \partial (\partial_\mu A_\nu)}\right)_{,\nu} A_\gamma \delta x^\gamma}_{(*2)}
\,\, \underbrace{=}_{Eq.\eqref{ab_SWAP}}\,\,
\underbrace{ \left(\textcolor{red}{-} \frac{\partial \mathscr{L}_{EM}}{ \partial (\partial_{\textcolor{red}{\nu}} A_{\textcolor{red}{\mu}})}\right)_{,\nu} }_{Eq.\eqref{eq:ab=0}=0} A_\gamma \delta x^\gamma
=0
\end{align*}
\newpage
\subsection{Non-Abelian Case (Yang-Mills Theory)}
\noindent \textbf{Eq.\eqref{eq:Guv}} \\
The derivation of Eq.\eqref{eq:Guv}
\begin{align*}
\mathbf{F} \rightarrow \mathbf{F}_{\mu\nu} &= \hat{T}_a \partial_\mu B_\nu^a - \hat{T}_a \partial_\nu B_\mu^a + \lambda [B_\mu^a \hat{T}_a, B_\nu^b \hat{T}_b] \\
&= \hat{T}_a \partial_\mu B_\nu^a - \hat{T}_a \partial_\nu B_\mu^a + \lambda B_\mu^a B_\nu^b [\hat{T}_a, \hat{T}_b] \\
&= \hat{T}_a \left( \partial_\mu B_\nu^a - \partial_\nu B_\mu^a + \lambda f_{bc}^a B_\mu^b B_\nu^c\right) \\
&= \hat{T}_a \left( F_{\mu\nu}^a + \lambda f_{bc}^a B_\mu^b B_\nu^c \right)
\end{align*}
\noindent \textbf{Eq.\eqref{eq:Lagrangian}}
\\
\noindent The explicit expression of Lagrangian Eq.\eqref{eq:Lagrangian} is
\[ K_{ab}g^{\mu\alpha}g^{\nu\beta}F^{a}_{\mu\nu}F^{b}_{\alpha\beta} = K_{ab}g^{\mu\alpha}g^{\nu\beta}\left(\partial_\mu B^a_{\nu} - \partial_{\nu}B^a_{\mu} + \lambda f^{a}_{cd}B^{c}_{\mu}B^{d}_{\nu}\right) \left(\partial_{\alpha} B^{b}_{\beta}-\partial_{\beta}B^b_{\alpha}+\lambda f^b_{ef}B^e_{\alpha}B^f_{\beta}\right) \]
\noindent \textbf{Eq.\eqref{eq:Delta_L}}
\\ The derivation of $\Delta \mathscr{L}_{YM}$ is
\noindent
\begin{align*}
\Delta \mathscr{L}_{YM} &= \mathscr{L}_{YM}[\tilde{B}^a_\nu(\tilde{x}^\gamma), \tilde{B}^a_{\nu,\mu}(\tilde{x}^\gamma), \tilde{x}^\gamma] - \mathscr{L}_{YM}[B^a_\nu(x^\gamma), B^a_{\nu,\mu}(x^\gamma), x^\gamma] \\
&= \mathscr{L}_{YM}[\tilde{B}^a_\nu(\tilde{x}^\gamma), \tilde{B}^a_{\nu,\mu}(\tilde{x}^\gamma), \tilde{x}^\gamma] - \mathscr{L}_{YM}[B^a_\nu(\tilde{x}^\gamma), B^a_{\nu,\mu}(\tilde{x}^\gamma), \tilde{x}^\gamma] + \mathscr{L}_{YM}[B^a_\nu(\tilde{x}^\gamma), B^a_{\nu,\mu}(\tilde{x}^\gamma), \tilde{x}^\gamma] - \mathscr{L}_{YM}[B^a_\nu(x^\gamma), B^a_{\nu,\mu}(x^\gamma), x^\gamma]\\
&= \left[ \frac{\partial \mathscr{L}_{YM}}{\partial B^a_\nu} \delta B^a_\nu + \frac{\partial \mathscr{L}_{YM}}{\partial (\partial_\mu B^a_\nu)} \delta (\partial_\mu B^a_\nu) \right] (\tilde{x}^\gamma) + \left[ \mathscr{L}_{YM}_{, \gamma} \delta x^\gamma \right] (x^\gamma) \\
& = \left[ \frac{\partial \mathscr{L}_{YM}}{\partial B^a_\nu} \delta B^a_\nu + \frac{\partial \mathscr{L}_{YM}}{\partial (\partial_\mu B^a_\nu)} \delta (\partial_\mu B^a_\nu) \right] (x^\gamma) + O(\delta^2) + \left[ \mathscr{L}_{YM}_{, \gamma} \delta x^\gamma \right] (x^\gamma)
\end{align*}
\noindent \textbf{Eq.\eqref{eq:Delta_S}}
\\ The derivation of $\Delta S$ is
\begin{align*}
\Delta S &= \int d^4x \cdot \mathscr{L}_{YM} \delta x^\gamma_{,\gamma} + \int d^4x \left[ \frac{\partial \mathscr{L}_{YM}}{\partial B^a_\nu}\delta B^a_\nu + \frac{\partial \mathscr{L}_{YM}}{\partial(\partial_\mu B^a_\nu)}\delta(\partial_\mu B^a_\nu) + \mathscr{L}_{YM}_{,\gamma} \delta x^\gamma \right] \\
&= \int d^4 x \cdot \left[ \frac{\partial \mathscr{L}_{YM}}{\partial B^a_\nu}\delta B^a_\nu + \frac{\partial \mathscr{L}_{YM}}{\partial(\partial_\mu B^a_\nu)}\partial_\mu(\delta B^a_\nu) + (\mathscr{L}_{YM} \delta x^\gamma)_{,\gamma} \right]\\
&= \int \left[ \frac{\partial \mathscr{L}_{YM}}{\partial B^a_\nu} - \partial_\mu\left(\frac{\partial\mathscr{L}_{YM}}{\partial(\partial_\mu B^a_\nu)}\right) \right] \delta B^a_\nu d^4 x + \int \left[ \partial_\mu\left(\frac{\partial \mathscr{L}_{YM}}{\partial (\partial_\mu B^a_\nu)}\delta B^a_\nu\right) + (\mathscr{L}_{YM} \delta x^\gamma)_{,\gamma}\right] d^4 x
\end{align*}
\noindent \textbf{Eq.\eqref{eq:Non-ab_partial}}
\begin{align*}
\frac{\partial \mathscr{L}_{YM}}{\partial (\partial_\mu B_\nu^a)} = -\frac{1}{4\pi c} K_{ab} g^{\alpha\mu} g^{\beta\nu} F_{\alpha\beta}^b \sqrt{-g}
\end{align*}
\begin{align*}
\frac{\partial \mathscr{L}_{YM}}{\partial(\partial_\mu B^a_\nu)} &= \frac{\partial}{\partial(\partial_\mu B^a_\nu)} \left( -\frac{1}{16\pi c} K_{cb} g^{\alpha\rho}g^{\beta\sigma}F^c_{\alpha\beta}F^b_{\rho\sigma}\sqrt{-g} \right) \\
&= -\frac{1}{16\pi c} K_{cb} g^{\alpha\rho}g^{\beta\sigma}\sqrt{-g} \frac{\partial}{\partial(\partial_\mu B^a_\nu)} (F^c_{\alpha\beta}F^b_{\rho\sigma}) \\
&= -\frac{1}{16\pi c} K_{cb} g^{\alpha\rho}g^{\beta\sigma}\sqrt{-g} \left[ \frac{\partial F^c_{\alpha\beta}}{\partial(\partial_\mu B^a_\nu)}F^b_{\rho\sigma} + F^c_{\alpha\beta}\frac{\partial F^b_{\rho\sigma}}{\partial(\partial_\mu B^a_\nu)} \right] \\
&= -\frac{1}{16\pi c} K_{cb} g^{\alpha\rho}g^{\beta\sigma}\sqrt{-g} \left[ (\delta^\mu_\alpha \delta^\nu_\beta - \delta^\nu_\alpha \delta^\mu_\beta) \delta^c_a F^b_{\rho\sigma}
+
F^c_{\alpha\beta}(\delta^\mu_\rho \delta^\nu_\sigma - \delta^\nu_\rho \delta^\mu_\sigma)\delta^b_a \right] \\
&= -\frac{1}{16\pi c} \sqrt{-g} \left[K_{ab} (g^{\mu\alpha}g^{\nu\beta} - g^{\nu\alpha}g^{\mu\beta})F^b_{\alpha\beta} + K_{ab} F^b_{\alpha\beta}(g^{\mu\alpha}g^{\nu\beta} - g^{\nu\alpha}g^{\mu\beta}) \right] \\
&= -\frac{1}{8\pi c} K_{ab} \sqrt{-g} \left[ (g^{\mu\alpha}g^{\nu\beta} - g^{\nu\alpha}g^{\mu\beta})F^b_{\alpha\beta} \right]\\
&= -\frac{1}{8\pi c} K_{ab} \sqrt{-g} \left[ g^{\mu\alpha}g^{\nu\beta}F^b_{\alpha\beta} - g^{\nu\alpha}g^{\mu\beta}F^c_{\alpha\beta} \right]\\
&= -\frac{1}{8\pi c} K_{ab} \sqrt{-g} \left[ g^{\mu\alpha}g^{\nu\beta}F^b_{\alpha\beta} - g^{\nu\textcolor{red}{\beta}}g^{\mu\textcolor{red}{\alpha}}F^b_{\textcolor{red}{\beta\alpha}} \right]
\end{align*}
\noindent Using the antisymmetric property: $F^b_{\beta\alpha} = -F^b_{\alpha\beta}$, we get
\begin{align*}
\frac{\partial \mathscr{L}_{YM}}{\partial(\partial_\mu B^a_\nu)}
&= -\frac{1}{4\pi c} K_{ab} g^{\mu\alpha}g^{\nu\beta} \sqrt{-g} F^b_{\alpha\beta}
\end{align*}
\noindent \textbf{Eq.\eqref{eq:(*)}}
\begin{align*}
\underbracket[0.4pt][0pt]{\partial_\mu \left[ \frac{\partial \mathscr{L}_{YM}}{\partial(\partial_\mu B^a_\nu)} B^a_{\gamma} \delta x^\gamma_{,\nu} \right]}_{(*)}
&= \partial_\mu \left[ \left( \frac{\partial \mathscr{L}_{YM}}{\partial (\partial_\mu B^a_\nu)} B^a_\gamma \delta x^\gamma\right)_{,\nu} - \left( \frac{\partial \mathscr{L}_{YM}}{\partial (\partial_\mu B^a_\nu)} \right)_{,\nu} B^a_\gamma \delta x^\gamma - \frac{\partial \mathscr{L}_{YM}}{\partial (\partial_\mu B^a_\nu)} B^a_{\gamma,\nu} \delta x^\gamma \right] \\
&= \underbracket[0.4pt][0pt]{\left[ \frac{\partial \mathscr{L}_{YM}}{\partial (\partial_\mu B^a_\nu)} B^a_\gamma \delta x^\gamma \right]_{,\nu \mu}}_{(1)} - \underbracket[0.4pt][0pt]{\partial_\mu \left[ \left( \frac{\partial \mathscr{L}_{YM}}{ \partial (\partial_\mu B^a_\nu)}\right)_{,\nu} B^a_\gamma \delta x^\gamma\right]}_{(2)} - \underbracket[0.4pt][0pt]{\partial_\mu \left[\frac{\partial \mathscr{L}_{YM}}{\partial(\partial_\mu B^a_\nu)}B^a_{\gamma,\nu} \delta x^\gamma \right]}_{(3)}
\end{align*}
\noindent \textbf{Eq.\eqref{eq:(*1)}}
\begin{align*}
\left( \frac{\partial \mathscr{L}_{YM}}{\partial (\partial_\mu B_\nu^a)} B_\gamma^a \delta x^\nu \right)_{,\nu\mu}
&=\left( -\frac{1}{4\pi c} K_{ab} g^{\alpha\mu} g^{\beta\nu} F_{\alpha\beta}^b \sqrt{-g} B_\gamma^a \delta x^\nu \right)_{,\nu\mu} \\
&= \left( -\frac{1}{8\pi c} K_{ab} g^{\alpha\mu} g^{\beta\nu} F_{\alpha\beta}^b \sqrt{-g} B_\gamma^a \delta x^\nu \right)_{,\nu\mu} + \left( -\frac{1}{8\pi c} K_{ab} g^{\alpha\mu} g^{\beta\nu} F_{\alpha\beta}^b \sqrt{-g} B_\gamma^a \delta x^\nu \right)_{,\nu\mu}\\
&= \left( -\frac{1}{8\pi c} K_{ab} g^{\alpha \mu} g^{\beta\nu} F_{\alpha\beta}^b \sqrt{-g} B_\gamma^a \delta x^\nu \right)_{,\nu\mu} + \left( -\frac{1}{8\pi c} K_{ab} g^{\textcolor{blue}{\beta}\textcolor{red}{\nu}} g^{\textcolor{blue}{\alpha}\textcolor{red}{\mu}} F_{\textcolor{blue}{\beta\alpha}}^b \sqrt{-g} B_\gamma^a \delta x^\nu \right)_{\textcolor{red}{,\mu\nu}} \\
&= \left( -\frac{1}{8\pi c} K_{ab} g^{\alpha\mu} g^{\beta\nu} F_{\alpha\beta}^b \sqrt{-g} B_\gamma^a \delta x^\nu \right)_{,\nu\mu} - \left( -\frac{1}{8\pi c} K_{ab} g^{\alpha\mu} g^{\beta\nu} F_{\alpha\beta}^b \sqrt{-g} B_\gamma^a \delta x^\nu \right)_{,\nu\mu} = 0
\end{align*}
\\
\noindent \textbf{Eq.\eqref{eq:(*2)}} \\
\noindent The $(*2)$ term rely on the EoM:
\[
\left( \frac{\partial \mathscr{L}_{YM}}{\partial(\partial_{\mu}B^{a}_{\nu})} \right)_{,\mu}= \frac{\partial \mathscr{L}_{YM}}{\partial B_{\nu}^{a}}
\]
\begin{table}[h]
\centering
\begin{tabular}{|>{\centering\arraybackslash}m{0.8\textwidth}|} % Use 'm' column type for vertical centering and width control
\hline
\begin{align*}
\left(\frac{\partial \mathcal{L}}{\partial (\partial_\phi B_\varepsilon^a)} \right)_{,\phi} = \left( -\frac{1}{4\pi c} K_{ab} g^{\alpha\phi} g^{\beta\varepsilon} F_{\alpha\beta}^b \sqrt{-g} \right)_{,\phi} = \frac{\partial \mathcal{L}}{\partial B_\varepsilon^a} \text{ is EoM}
\end{align*}\\ \hline
\begin{align*}
\left(\frac{\partial \mathcal{L}}{\partial(\partial_{\varepsilon}B^{a}_{\phi})}\right)_{,\phi} = \left( -\frac{1}{4\pi c} K_{ab} g^{\alpha\varepsilon} g^{\beta\phi} F_{\alpha\beta}^b \sqrt{-g} \right)_{,\phi}= \left( -\frac{1}{4\pi c} K_{ab} g^{\textcolor{red}{\beta}\varepsilon} g^{\textcolor{red}{\alpha}\phi} F_{\textcolor{red}{\beta\alpha}}^b \sqrt{-g} \right)_{,\phi} \\
= -\left( -\frac{1}{4\pi c} K_{ab} g^{\alpha\varepsilon} g^{\beta\phi} F_{\textcolor{red}{\alpha\beta}}^b \sqrt{-g} \right)_{,\phi}= -\frac{\partial \mathcal{L}}{\partial B^a_\varepsilon}
\end{align*} \\ \hline
\end{tabular}
%\caption{A simple 2 row, 1 column table} % Add caption if you need it
\label{tab:two_row_one_column}
\end{table}
\noindent The explicit form of $\frac{\partial \mathscr{L}_{YM}}{\partial B^a_\mu}$ is:
\begin{align*}
\frac{\partial \mathscr{L}_{YM}}{\partial B^k_\varepsilon}
&= -\frac{1}{8\pi c} K_{ab} g^{\mu\alpha} g^{\nu\beta} F_{\alpha\beta}^a \sqrt{-g}\frac{\partial }{\partial B^k_\varepsilon} \left(F_{\mu\nu}^b + \lambda f_{m n}^b B^m_\mu B^n_\nu \right) \\
&=\left(- \frac{1}{8\pi c} K_{ab} g^{\mu\alpha} g^{\nu\beta} F_{\alpha\beta}^a \sqrt{-g}\right) \left( \lambda f_{m n}^b \delta^\varepsilon_\mu \delta^m_k B^n_\nu + \lambda f_{m n}^b B^m_\mu \delta^\varepsilon_\nu \delta^n_k \right)\\
&=\left(- \frac{1}{8\pi c} K_{ab} g^{\mu\alpha} g^{\nu\beta} F_{\alpha\beta}^a \sqrt{-g}\right) \left(
\lambda f_{k n}^b \delta^\varepsilon_\mu B^n_\nu
+ \lambda f_{m k}^b B^m_\mu \delta^\varepsilon_\nu\right)\\
&=\left(- \frac{1}{8\pi c} K_{ab} g^{\mu\alpha} g^{\nu\beta} F_{\alpha\beta}^a \sqrt{-g}\right) \left(
\lambda f_{k n}^b \delta^\varepsilon_\mu B^n_\nu
+ \lambda f_{{\textcolor{red}{n}}k}^b B^{\textcolor{red}{n}}_\mu \delta^\varepsilon_\nu\right)\\
&=\left(- \frac{1}{8\pi c} K_{ab} g^{\mu\alpha} g^{\nu\beta} F_{\alpha\beta}^a \sqrt{-g}\right) \left(
\lambda f_{k n}^b \delta^\varepsilon_\mu B^n_\nu
\textcolor{red}{-} \lambda f_{{\textcolor{red}{kn}}}^b B^{{n}}_\mu \delta^\varepsilon_\nu\right)\\
&=\left(- \frac{1}{8\pi c} K_{ab} \lambda f_{kn}^b \sqrt{-g} \right) \left(
g^{\mu\alpha} g^{\nu\beta} F_{\alpha\beta}^a \delta^\varepsilon_\mu B^n_\nu
- g^{\mu\alpha} g^{\nu\beta} F_{\alpha\beta}^a B^{{n}}_\mu \delta^\varepsilon_\nu \right)\\
&=\left(- \frac{1}{8\pi c} K_{ab} \lambda f_{kn}^b \sqrt{-g} \right) \left(
g^{\varepsilon\alpha} g^{\nu\beta} F_{\alpha\beta}^a B^n_\nu
-
g^{\mu\alpha} g^{\varepsilon\beta} F_{\alpha\beta}^a B^{{n}}_\mu \right)\\
&=\left(- \frac{1}{8\pi c} K_{ab} \lambda f_{kn}^b \sqrt{-g} \right) \left(
g^{\varepsilon\alpha} g^{\textcolor{red}{\mu}\beta} F_{\alpha\beta}^a B^n_{\textcolor{red}{\mu}}
-
g^{\mu\textcolor{red}{\beta}} g^{\varepsilon\textcolor{red}{\alpha}} F_{\textcolor{red}{\beta\alpha}}^a B^{{n}}_\mu \right)\\
&=\left(- \frac{1}{8\pi c} K_{ab} \lambda f_{kn}^b \sqrt{-g} \right) \left(
g^{\varepsilon\alpha} g^{{\mu}\beta} F_{\alpha\beta}^a
\textcolor{red}{+}
g^{\varepsilon{\alpha}}g^{\mu{\beta}} F_{\textcolor{red}{\alpha\beta}}^a \right)B^{{n}}_\mu\\
&=\left(- \frac{1}{4\pi c} K_{ab} \lambda f_{kn}^b \sqrt{-g} \right) \left(
g^{\varepsilon\alpha} g^{{\mu}\beta} F_{\alpha\beta}^a
\right)B^{{n}}_\mu\\
&=\left(- \frac{1}{4\pi c} K_{ab} g^{\varepsilon\alpha} g^{{\mu}\beta} F_{\alpha\beta}^a \sqrt{-g} \right) \lambda f_{kn}^b B^{{n}}_\mu\\
&=\frac{\partial\mathscr{L}_{YM}}{\partial(\partial_{\varepsilon}B_{\mu}^{b})} \lambda f_{kn}^b B^{{n}}_\mu
\end{align*}
\noindent The $(*2)$ term is:
\begin{align*}
\underbracket[0.4pt][0pt]{ \left( \frac{\partial \mathscr{L}_{YM}}{ \partial (\partial_\mu B^a_\nu)}\right)_{,\nu} B^a_\gamma \delta x^\gamma}_{(*2)} &=-\frac{\partial \mathcal{L}}{\partial B^a_\mu } B^a_\gamma \delta x^\gamma\\
&=-\left[ \frac{\partial\mathscr{L}_{YM}}{\partial(\partial_{\mu}B_{\nu}^{b})}(\lambda f_{an}^{b}B_{\nu}^{n}) \right] B^a_\gamma \delta x^\gamma\\
&= -\frac{\partial\mathscr{L}_{YM}}{\partial(\partial_{\mu}B_{\nu}^{\textcolor{red}{a}})}\left( \lambda f_{\textcolor{red}{b}n}^{\textcolor{red}{a}}B_{\nu}^{n} B^{\textcolor{red}{b}}_\gamma \delta x^\gamma \right)
\end{align*}
\begin{align*}
\left(\frac{\partial \mathcal{L}}{\partial (\partial_\phi B_\varepsilon^a)} \right)_{,\phi} = \left( -\frac{1}{4\pi c} K_{ab} g^{\alpha\phi} g^{\beta\varepsilon} F_{\alpha\beta}^b \sqrt{-g} \right)_{,\phi}
&= \frac{\partial \mathcal{L}}{\partial B_\varepsilon^a}
=\left(- \frac{1}{4\pi c} K_{kb} g^{\varepsilon\alpha} g^{{ \phi}\beta} F_{\alpha\beta}^k \sqrt{-g} \right) \lambda f_{an}^b B^{{n}}_ \phi\\
\left( K_{ab} g^{\alpha\phi} g^{\beta\varepsilon} F_{\alpha\beta}^b \sqrt{-g} \right)_{,\phi}
&=\left( K_{\textcolor{red}{kb}} g^{\varepsilon\alpha} g^{{ \phi}\beta} F_{\textcolor{blue}{\beta\alpha}}^{\textcolor{red}{b}} \sqrt{-g} \right) \lambda f_{\textcolor{blue}{na}}^{\textcolor{red}{k}} B^{{n}}_ \phi\\
\left( K_{ab} g^{\varepsilon\beta}g^{\phi\alpha} F_{\alpha\beta}^b \sqrt{-g} \right)_{,\phi}
&=\left( K_{{kb}} g^{\varepsilon\textcolor{blue}{\beta}} g^{{ \phi}\textcolor{blue}{\alpha}} F_{\textcolor{blue}{\alpha\beta}}^{{b}} \sqrt{-g} \right) \lambda f_{{na}}^{{k}} B^{{n}}_ \phi\\
\end{align*}
\newpage
\subsection{GR-Palatini Action}
\noindent \textbf{Eq.\eqref{eq:Einstein}} \\
\begin{align*}
\frac{\partial \mathscr{L}_{GR}}{\partial g^{\mu\nu}} &= \frac{1}{2\kappa}\frac{\partial }{\partial g^{\mu\nu}}\left(\sqrt{-g}g^{\kappa\sigma}\delta^\omega_\varepsilon R^\varepsilon_{\kappa\omega\sigma}\right) = \frac{1}{2\kappa} \sqrt{-g} \left( \delta^\omega_\varepsilon \delta^\kappa_\mu \delta^\sigma_\nu R^\varepsilon_{\kappa\omega\sigma} - \frac{1}{2} g_{\mu\nu} g^{\kappa\sigma} \delta^\omega_\varepsilon R^\varepsilon_{\kappa\omega\sigma} \right) \nonumber \\
&= \frac{1}{2\kappa} \sqrt{-g}\left( \delta^\omega_\varepsilon \delta^\kappa_\mu \delta^\sigma_\nu R^\varepsilon_{\kappa\omega\sigma} - \frac{1}{2} g_{\mu\nu} g^{\kappa\sigma} R_{\kappa\sigma} \right) \nonumber \\
&= \frac{1}{2\kappa} \sqrt{-g}\left( R_{\mu\nu} - \frac{1}{2} g_{\mu\nu} R \right) \nonumber\\
&= \frac{1}{2\kappa} \sqrt{-g}\left( R_{\mu\nu} - \frac{1}{2} g_{\mu\nu} R \right)
\end{align*}
\noindent \textbf{Eq.\eqref{eq:Fact_1}} \\
\begin{align*}
\left( \sqrt{-g} \right)_{,\gamma} &= -\frac{1}{2} \sqrt{-g} \, g_{\phi\psi} {g^{\phi\psi}}_{, \gamma} \\
\left( \sqrt{-g} \right)_{;\gamma} &= -\frac{1}{2} \sqrt{-g} \, g_{\phi\psi} {g^{\phi\psi}}_{; \gamma} \\
\end{align*}
\begin{align*}
{g^{\mu\nu}}_{;\gamma} &= {g^{\mu\nu}}_{,\gamma}
+g^{\eta\nu}\Gamma_{\eta\gamma}^{\mu}
+g^{\mu\eta}\Gamma_{\eta\gamma}^{\nu}\\
\to g_{\mu\nu}{g^{\mu\nu}}_{;\gamma} &= g_{\mu\nu}{g^{\mu\nu}}_{,\gamma}
+g_{\mu\nu}g^{\eta\nu}\Gamma_{\eta\gamma}^{\mu}
+g_{\mu\nu}g^{\mu\eta}\Gamma_{\eta\gamma}^{\nu}\\
&= g_{\mu\nu}{g^{\mu\nu}}_{,\gamma}
+\delta^\eta_\mu \Gamma_{\eta\gamma}^{\mu}
+\delta^\eta_\nu \Gamma_{\eta\gamma}^{\nu}\\
&= g_{\mu\nu}{g^{\mu\nu}}_{,\gamma}
+\Gamma_{\eta\gamma}^{\eta}
+\Gamma_{\eta\gamma}^{\eta}\\
&= g_{\mu\nu}{g^{\mu\nu}}_{,\gamma}
+2 \Gamma_{\eta\gamma}^{\eta}\\
\to \left( \sqrt{-g} \right)_{;\gamma}= -\frac{1}{2} \sqrt{-g} \, g_{\mu\nu} {g^{\mu\nu}}_{; \gamma}
&= -\frac{1}{2} \sqrt{-g} \,\left( g_{\mu\nu}{g^{\mu\nu}}_{,\gamma}
+2 \Gamma_{\eta\gamma}^{\eta} \right)\\
&= -\frac{1}{2} \sqrt{-g} g_{\mu\nu}{g^{\mu\nu}}_{,\gamma}
- \sqrt{-g} \Gamma_{\eta\gamma}^{\eta}\\
&= \left( \sqrt{-g} \right)_{,\gamma}
- \sqrt{-g} \Gamma_{\eta\gamma}^{\eta}\\
\to \frac{1}{\sqrt{-g}}\left( \sqrt{-g} \right)_{;\gamma}&=
\frac{1}{\sqrt{-g}}\left( \sqrt{-g} \right)_{,\gamma}-\Gamma_{\eta\gamma}^{\eta}
\end{align*}
\begin{align*}
\frac{1}{\sqrt{-g}}\left( \sqrt{-g} \, g^{\mu\nu}\right)_{;\gamma}
&=\frac{1}{\sqrt{-g}}\left( \sqrt{-g} \, \right)_{;\gamma}g^{\mu\nu}
+\frac{1}{\sqrt{-g}} \sqrt{-g} \, {g^{\mu\nu}}_{;\gamma}\\
&=\left( \frac{1}{\sqrt{-g}}\left( \sqrt{-g} \right)_{,\gamma}-\Gamma_{\eta\gamma}^{\eta} \right)g^{\mu\nu}
+\frac{1}{\sqrt{-g}} \sqrt{-g} \, \left({g^{\mu\nu}}_{,\gamma}
+g^{\eta\nu}\Gamma_{\eta\gamma}^{\mu}
+g^{\mu\eta}\Gamma_{\eta\gamma}^{\nu} \right)\\
&=\frac{1}{\sqrt{-g}}\left( \sqrt{-g} \right)_{,\gamma}g^{\mu\nu}-\Gamma_{\eta\gamma}^{\eta}g^{\mu\nu}
+\frac{1}{\sqrt{-g}} \sqrt{-g} \, {g^{\mu\nu}}_{,\gamma}
+g^{\eta\nu}\Gamma_{\eta\gamma}^{\mu}
+g^{\mu\eta}\Gamma_{\eta\gamma}^{\nu}\\
&=\frac{1}{\sqrt{-g}}\left( \sqrt{-g} \, g^{\mu\nu} \right)_{,\gamma}-\Gamma_{\eta\gamma}^{\eta}g^{\mu\nu}
+g^{\eta\nu}\Gamma_{\eta\gamma}^{\mu}
+g^{\mu\eta}\Gamma_{\eta\gamma}^{\nu}\\
\end{align*}
\noindent \textbf{Eq.\eqref{eq:EoM2_R}} \\
\noindent Evaluate $\frac{\partial \mathscr{L}_{GR}}{\partial \Gamma_{\mu\nu}^\alpha}$:
\begin{align*}
\frac{\partial \mathscr{L}_{GR}}{\partial \Gamma_{\mu\nu}^\alpha} &= \frac{\partial}{\partial \Gamma_{\mu\nu}^\alpha} \left(\frac{1}{2\kappa} \sqrt{-g} \, g^{\kappa\sigma} \delta_\varepsilon^\omega R_{\kappa\omega\sigma}^\varepsilon \right) \nonumber \\
&=\frac{1}{2\kappa} \sqrt{-g} \, g^{\kappa\sigma} \delta_\varepsilon^\omega \frac{\partial}{\partial \Gamma_{\mu\nu}^\alpha} \left( \Gamma_{\kappa\sigma,\omega}^\varepsilon - \Gamma_{\kappa\omega,\sigma}^\varepsilon + \Gamma_{\eta\omega}^\varepsilon \Gamma_{\kappa\sigma}^\eta - \Gamma_{\eta\sigma}^\varepsilon \Gamma_{\kappa\omega}^\eta \right) \nonumber \\
&= \frac{1}{2\kappa} \sqrt{-g} \, g^{\kappa\sigma} \delta_\varepsilon^\omega \left( \delta_\alpha^\varepsilon \delta_\eta^\mu \delta_\omega^\nu \Gamma_{\kappa\sigma}^\eta
+ \Gamma_{\eta\omega}^\varepsilon \delta_\alpha^\eta \delta_\kappa^\mu \delta_\sigma^\nu
- \delta_\alpha^\varepsilon \delta_\eta^\mu \delta_\sigma^\nu \Gamma_{\kappa\omega}^\eta
- \Gamma_{\eta\sigma}^\varepsilon \delta_\alpha^\eta \delta_\kappa^\mu \delta_\omega^\nu \right) \nonumber \\
&=\frac{1}{2\kappa}\left( \sqrt{-g} \, g^{\kappa\sigma} \delta_\alpha^\nu \Gamma_{\kappa\sigma}^\mu +\sqrt{-g}\, g^{\mu\nu} \Gamma_{\alpha\omega}^\omega -\sqrt{-g}\, g^{\kappa\nu} \Gamma_{\kappa\alpha}^\mu -\sqrt{-g}\, g^{\mu\sigma} \Gamma_{\alpha\sigma}^\nu \right)
\end{align*}
\noindent \textbf{Eq.\eqref{eq:EoM2_D}} \\
\noindent Evaluate $\frac{\partial \mathscr{L}_{GR}}{\partial \Gamma_{\mu\nu,\gamma}^\alpha}$:
\begin{align*}
\frac{\partial \mathscr{L}_{GR}}{\partial \Gamma_{\mu\nu,\gamma}^\alpha} &= \frac{\partial}{\partial \Gamma_{\mu\nu,\gamma}^\alpha} \left(\frac{1}{2\kappa} \sqrt{-g} \, g^{\kappa\sigma} \delta_\varepsilon^\omega R_{\kappa\omega\sigma}^\varepsilon \right) \nonumber\\
&= \frac{1}{2\kappa} \sqrt{-g} \, g^{\kappa\sigma} \delta_\varepsilon^\omega \frac{\partial}{\partial \Gamma_{\mu\nu,\gamma}^\alpha} \left( \Gamma_{\kappa\sigma,\omega}^\varepsilon - \Gamma_{\kappa\omega,\sigma}^\varepsilon + \Gamma_{\eta\omega}^\varepsilon \Gamma_{\kappa\sigma}^\eta - \Gamma_{\eta\sigma}^\varepsilon \Gamma_{\kappa\omega}^\eta \right) \nonumber\\
&=\frac{1}{2\kappa} \sqrt{-g} \, g^{\kappa\sigma} \delta_\varepsilon^\omega \left( \delta_\alpha^\varepsilon \delta_\kappa^\mu \delta_\sigma^\nu \delta_\omega^\gamma - \delta_\alpha^\varepsilon \delta_\kappa^\mu \delta_\omega^\nu \delta_\sigma^\gamma \right) \nonumber\\
&=\frac{1}{2\kappa} \sqrt{-g} \left( g^{\mu\nu} \delta_\alpha^\gamma - g^{\mu\gamma} \delta_\alpha^\nu \right)
\end{align*}
\noindent \textbf{Eq.\eqref{eq:EoM2_DD}} \\
\noindent Evaluate $ \left( \frac{\partial \mathscr{L}_{GR}}{\partial \Gamma_{\mu\nu,\gamma}^\alpha} \right)_{,\gamma} $:
\begin{align*}
\left(\frac{\partial \mathscr{L}_{GR}}{\partial \Gamma_{\mu\nu,\gamma}^\alpha}\right)_{,\gamma}
&=\frac{1}{2\kappa} \left[\sqrt{-g} \left( g^{\mu\nu} \delta_\alpha^\gamma - g^{\mu\gamma} \delta_\alpha^\nu \right)\right]_{,\gamma} \nonumber \\
&=\frac{1}{2\kappa} (\sqrt{-g} \, g^{\mu\nu})_{,\gamma} \delta_\alpha^\gamma- (\sqrt{-g} \, g^{\mu\gamma})_{,\gamma} \delta_\alpha^\nu \nonumber\\
&=\frac{1}{2\kappa} (\sqrt{-g} \, g^{\mu\nu})_{,\alpha} - \frac{1}{2\kappa} (\sqrt{-g} \, g^{\mu\gamma})_{,\gamma} \delta_\alpha^\nu
\end{align*}
\noindent \textbf{Eq.\eqref{eq:EoM2_cal}} \\
\begin{adjustwidth}{-2cm}{-1.5cm}
\begin{align} \label{eq:EoM2_cal_2}
\left( \frac{\partial \mathscr{L}_{GR}}{\partial \Gamma_{\mu\nu,\gamma}^\alpha} \right)_{,\gamma} &= \frac{\partial \mathscr{L}_{GR}}{\partial \Gamma_{\mu\nu}^\alpha} \nonumber \\
\underbracket[0.4pt][0pt]{(\sqrt{-g} \, g^{\mu\nu})_{,\alpha}}_{(A)} - \underbracket[0.4pt][0pt]{(\sqrt{-g} \, g^{\mu\gamma})_{,\gamma} \delta_\alpha^\nu}_{(B)} &= \underbracket[0.4pt][0pt]{\sqrt{-g} \, g^{\kappa\sigma} \delta_\alpha^\nu \Gamma_{\kappa\sigma}^\mu}_{(C)} + \underbracket[0.4pt][0pt]{\sqrt{-g}\, g^{\mu\nu} \Gamma_{\alpha\omega}^\omega}_{(D)} -\underbracket[0.4pt][0pt]{\sqrt{-g}\, g^{\kappa\nu} \Gamma_{\kappa\alpha}^\mu}_{(E)} -\underbracket[0.4pt][0pt]{\sqrt{-g}\, g^{\mu\sigma} \Gamma_{\alpha\sigma}^\nu}_{(F)} \nonumber \\
\underbracket[0.4pt][0pt]{(\sqrt{-g} \, g^{\mu\nu})_{,\alpha}}_{(A)} +\underbracket[0.4pt][0pt]{\sqrt{-g}\, g^{\kappa\nu} \Gamma_{\kappa\alpha}^\mu}_{(E)} &=\underbracket[0.4pt][0pt]{(\sqrt{-g} \, g^{\mu\gamma})_{,\gamma} \delta_\alpha^\nu}_{(B)}+ \underbracket[0.4pt][0pt]{\sqrt{-g} \, g^{\kappa\sigma} \delta_\alpha^\nu \Gamma_{\kappa\sigma}^\mu}_{(C)} + \underbracket[0.4pt][0pt]{\sqrt{-g}\, g^{\mu\nu} \Gamma_{\alpha\omega}^\omega}_{(D)} -\underbracket[0.4pt][0pt]{\sqrt{-g}\, g^{\mu\sigma} \Gamma_{\alpha\sigma}^\nu}_{(F)} \nonumber \\
\frac{1}{\sqrt{-g}}(\sqrt{-g} \, g^{\mu\nu})_{,\alpha} + g^{\kappa\nu} \Gamma_{\kappa\alpha}^\mu &= \underbracket[0.4pt][0pt]{ \left[\frac{1}{\sqrt{-g}} (\sqrt{-g} \, g^{\mu\gamma})_{,\gamma} + g^{\kappa\sigma} \Gamma_{\kappa\sigma}^\mu\right]}_{(B)+(C)} \delta_\alpha^\nu+g^{\mu\nu} \Gamma_{\alpha\textcolor{red}{\gamma}}^{\textcolor{red}{\gamma}} - g^{\mu\textcolor{red}{\kappa}} \Gamma_{\alpha\textcolor{red}{\kappa}}^\nu \nonumber\\
\underbrace{\frac{1}{\sqrt{-g}}(\sqrt{-g} \, g^{\mu\nu})_{,\alpha}
\textcolor{blue}{-g^{\mu\nu}\Gamma^\gamma_{\gamma\alpha}} + g^{\kappa\nu} \Gamma_{\kappa\alpha}^\mu + \textcolor{red}{ g^{\mu\kappa}\Gamma^\nu_{\kappa\alpha}}}_{\eqref{eq:Fact_1}={\frac{1}{\sqrt{-g}} \left(\sqrt{-g}\,g^{\mu\nu}\right)}_{;\alpha}}
&=\underbrace{\left[ \frac{1}{\sqrt{-g}} (\sqrt{-g} \, g^{\mu\gamma})_{,\gamma} + g^{\textcolor{red}{\eta\gamma}} \Gamma_{\textcolor{red}{\eta\gamma}}^\mu \right] }_{(\#)} \delta_\alpha^\nu +
\underbrace{g^{\mu\nu} \Gamma_{\alpha\gamma}^{\gamma} \textcolor{blue}{-g^{\mu\nu}\Gamma^\gamma_{\gamma\alpha}}}_{g^{\mu\nu} T_{\alpha\gamma}^{\gamma} } +
\underbrace{ \textcolor{red}{ g^{\mu\kappa}\Gamma^\nu_{\kappa\alpha}} - g^{\mu\kappa} \Gamma_{\alpha\kappa}^\nu }_{g^{\mu\kappa}T^\nu_{\kappa\alpha}}
\end{align}
\end{adjustwidth}
%\hspace*{-2.5cm}
\noindent Calculate $(\#)$ term:
\begin{align*}
\underbrace{\left[ \frac{1}{\sqrt{-g}} (\sqrt{-g} \, g^{\mu\gamma})_{,\gamma} + g^{\eta\gamma} \Gamma_{\eta\gamma}^\mu \right]}_{(\#)} &= \underbrace{\frac{1}{\sqrt{-g}} (\sqrt{-g} \, g^{\mu\gamma})_{,\gamma} \textcolor{blue}{-g^{\mu\gamma}\Gamma^\eta_{\eta\gamma}}
+ g^{\eta\gamma} \Gamma_{\eta\gamma}^\mu \textcolor{red}{+ g^{\mu\eta}\Gamma^\gamma_{\eta\gamma}}
}_{\eqref{eq:Fact_1}={\frac{1}{\sqrt{-g}} \left(\sqrt{-g}\,g^{\mu\gamma}\right)}_{;\gamma}}
\textcolor{blue}{+}\underbrace{\textcolor{blue}{g^{\mu\gamma}\Gamma^\eta_{\eta\gamma}} \textcolor{red}{- g^{\mu\eta}\Gamma^\gamma_{\eta\gamma}}}_{g^{\mu\gamma}\, T^\eta_{\eta\gamma}}\\
&= {\frac{1}{\sqrt{-g}} \left(\sqrt{-g}\,g^{\mu\gamma}\right)}_{;\gamma}+g^{\mu\gamma}\, T^\eta_{\eta\gamma}
\end{align*}
\noindent Eq.\eqref{eq:EoM2_cal_2} become
\begin{align}
{\frac{1}{\sqrt{-g}} \left(\sqrt{-g}\,g^{\mu\nu}\right)}_{;\alpha} &=\underbrace{\left[ {\frac{1}{\sqrt{-g}} \left(\sqrt{-g}\,g^{\mu\gamma}\right)}_{;\gamma}+g^{\mu\gamma}\, T^\eta_{\eta\gamma}\right] }_{(\#)} \delta_\alpha^\nu +
g^{\mu\nu} T_{\alpha\gamma}^{\gamma} +
g^{\mu\kappa}T^\nu_{\kappa\alpha}
\end{align}
\noindent \textbf{Eq.\eqref{eq:EoM2_result}}\\
Starting from Eq.\eqref{eq:EoM2_cal}
\begin{align*}
{\frac{1}{\sqrt{-g}} \left(\sqrt{-g}\,g^{\mu\nu}\right)}_{;\alpha}
&=\left[ {\frac{1}{\sqrt{-g}} \left(\sqrt{-g}\,g^{\mu\gamma}\right)}_{;\gamma}+g^{\mu\gamma}\, T^\eta_{\eta\gamma}\right] \delta_\alpha^\nu +
g^{\mu\nu} T_{\alpha\gamma}^{\gamma} +
g^{\mu\kappa}T^\nu_{\kappa\alpha}\\
{\frac{1}{\sqrt{-g}} \left(\sqrt{-g}\,g^{\mu\nu}\right)}_{;\alpha} -\delta_\alpha^\nu {\frac{1}{\sqrt{-g}} \left(\sqrt{-g}\,g^{\mu\gamma}\right)}_{;\gamma}
&= \delta_\alpha^\nu g^{\mu\gamma}\, T^\eta_{\eta\gamma} +
g^{\mu\nu} T_{\alpha\gamma}^{\gamma} +
g^{\mu\kappa}T^\nu_{\kappa\alpha}\\
\delta^\alpha_\nu {\frac{1}{\sqrt{-g}} \left(\sqrt{-g}\,g^{\mu\nu}\right)}_{;\alpha}
-\delta^\alpha_\nu \delta_\alpha^\nu {\frac{1}{\sqrt{-g}} \left(\sqrt{-g}\,g^{\mu\gamma}\right)}_{;\gamma}
&= \delta^\alpha_\nu\delta_\alpha^\nu g^{\mu\gamma}\, T^\eta_{\eta\gamma} +
\delta^\alpha_\nu g^{\mu\nu} T_{\alpha\gamma}^{\gamma} +
\delta^\alpha_\nu g^{\mu\kappa}T^\nu_{\kappa\alpha}\\
{\frac{1}{\sqrt{-g}} \left(\sqrt{-g}\,g^{\mu\nu}\right)}_{;\nu}
-\mathbb{D} {\frac{1}{\sqrt{-g}} \left(\sqrt{-g}\,g^{\mu\gamma}\right)}_{;\gamma}
&= \mathbb{D}\, g^{\mu\gamma}\, T^\eta_{\eta\gamma} +
g^{\mu\nu} T_{\nu\gamma}^{\gamma} +
g^{\mu\kappa}T^\nu_{\kappa\nu}\\
\left(1-\mathbb{D}\right){\frac{1}{\sqrt{-g}} \left(\sqrt{-g}\,g^{\mu\nu}\right)}_{;\nu} &= \left(\mathbb{D}-2\right)\, g^{\mu\gamma}\, T^\eta_{\eta\gamma} \\
{\frac{1}{\sqrt{-g}} \left(\sqrt{-g}\,g^{\mu\nu}\right)}_{;\nu} &=-\frac{\left(\mathbb{D}-2\right)}{\left(\mathbb{D}-1\right)}\, g^{\mu\gamma}\, T^\eta_{\eta\gamma}
\end{align*}
\noindent Substituting back into Eq.\eqref{eq:EoM2_cal}
\begin{align*}
{\frac{1}{\sqrt{-g}} \left(\sqrt{-g}\,g^{\mu\nu}\right)}_{;\alpha}
&=\left( -\frac{\left(\mathbb{D}-2\right)}{\left(\mathbb{D}-1\right)}\, g^{\mu\gamma}\, T^\eta_{\eta\gamma} +g^{\mu\gamma}\, T^\eta_{\eta\gamma} \right) \delta_\alpha^\nu +
g^{\mu\nu} T_{\alpha\gamma}^{\gamma} +
g^{\mu\kappa}T^\nu_{\kappa\alpha}\\
&=\frac{1}{\left(\mathbb{D}-1\right)}\, g^{\mu\gamma}\, T^\eta_{\eta\gamma} \, \delta_\alpha^\nu +
g^{\mu\nu} T_{\alpha\gamma}^{\gamma} +
g^{\mu\gamma}T^\nu_{\gamma\alpha}
\end{align*}
\noindent Furthermore, this equation must be symmetric on \(\mu\leftrightarrow\nu\):
\begin{adjustwidth}{-2cm}{-1.5cm}
\begin{align*}
{\frac{1}{\sqrt{-g}} \left(\sqrt{-g}\,g^{\mu\nu}\right)}_{;\alpha}
-{\frac{1}{\sqrt{-g}} \left(\sqrt{-g}\,g^{\nu\mu}\right)}_{;\alpha}
=0
&=\left(
\frac{1}{\left(\mathbb{D}-1\right)}\, g^{\mu\gamma}\, T^\eta_{\eta\gamma} \, \delta_\alpha^\nu +
\cancel{g^{\mu\nu} T_{\alpha\gamma}^{\gamma}} +
g^{\mu\gamma}T^\nu_{\gamma\alpha}
\right)
-\left(
\frac{1}{\left(\mathbb{D}-1\right)}\, g^{\nu\gamma}\, T^\eta_{\eta\gamma} \, \delta_\alpha^\mu +
\cancel{g^{\nu\mu} T_{\alpha\gamma}^{\gamma} }+
g^{\nu\gamma}T^\mu_{\gamma\alpha}
\right)\\
&=
\frac{1}{\left(\mathbb{D}-1\right)}\, \left(g^{\mu\gamma}\delta_\alpha^\nu -g^{\nu\gamma}\, \delta_\alpha^\mu \right)\, T^\eta_{\eta\gamma} \,
+g^{\mu\gamma}T^\nu_{\gamma\alpha}
-g^{\nu\gamma}T^\mu_{\gamma\alpha}\\
&=
\frac{1}{\left(\mathbb{D}-1\right)}\, \left(g^{\mu\gamma}\delta_\alpha^\nu -g^{\nu\gamma}\, \delta_\alpha^\mu \right)\, T^\eta_{\eta\gamma} \,
+\left(
g^{\mu\gamma}\delta^\nu_\eta
-g^{\nu\gamma}\delta^\mu_\eta
\right)T^\eta_{\gamma\alpha}\\
&=
\frac{1}{\left(\mathbb{D}-1\right)}\, \left(g^{\mu\gamma}\delta_\beta^\nu -g^{\nu\gamma}\, \delta_\beta^\mu \right)\delta^\beta_\alpha T^\eta_{\eta\gamma} \,
-\left(
g^{\mu\gamma}\delta^\nu_\beta
-g^{\nu\gamma}\delta^\mu_\beta
\right)T^\beta_{\alpha\gamma}\\
&=
\left(g^{\mu\gamma}\delta_\beta^\nu -g^{\nu\gamma}\, \delta_\beta^\mu \right)
\left( \frac{1}{\left(\mathbb{D}-1\right)} \delta^\beta_\alpha T^\eta_{\eta\gamma} \,
-T^\beta_{\alpha\gamma}
\right)
\end{align*}
\end{adjustwidth}
\begin{align*}
0&=
\left(g^{\mu\gamma}\delta_\beta^\nu -g^{\nu\gamma}\, \delta_\beta^\mu \right)
\left( \frac{1}{\left(\mathbb{D}-1\right)} \delta^\beta_\alpha T^\eta_{\eta\gamma} \,
-T^\beta_{\alpha\gamma}
\right)\\
0&=
g_{\mu\phi}g_{\nu\psi}\left(g^{\mu\gamma}\delta_\beta^\nu -g^{\nu\gamma}\, \delta_\beta^\mu \right)
\left( \frac{1}{\left(\mathbb{D}-1\right)} \delta^\beta_\alpha T^\eta_{\eta\gamma} \,
-T^\beta_{\alpha\gamma}
\right)\\
&=\left(
g_{\nu\psi}g^{\mu\gamma}
\delta^\gamma_\phi
\delta_\beta^\nu
-g_{\mu\phi}g_{\nu\psi} g^{\nu\gamma}\, \delta_\beta^\mu
\right)
\left( \frac{1}{\left(\mathbb{D}-1\right)} \delta^\beta_\alpha T^\eta_{\eta\gamma} \,
-T^\beta_{\alpha\gamma}
\right)\\
&=\left(
g_{\beta\psi}
\delta^\gamma_\phi
-g_{\beta\phi}\delta^\gamma_\psi
\right)
\left( \frac{1}{\left(\mathbb{D}-1\right)} \delta^\beta_\alpha T^\eta_{\eta\gamma} \,
-T^\beta_{\alpha\gamma}
\right)\\
\left(
g_{\beta\psi}
\delta^\gamma_\phi
-g_{\beta\phi}\delta^\gamma_\psi
\right)
T^\beta_{\alpha\gamma}
&=\left(
g_{\beta\psi}
\delta^\gamma_\phi
-g_{\beta\phi}\delta^\gamma_\psi
\right)
\frac{1}{\left(\mathbb{D}-1\right)} \delta^\beta_\alpha T_{\gamma}
\\
g_{\beta\psi}
\delta^\gamma_\phi
T^\beta_{\alpha\gamma}
-g_{\beta\phi}\delta^\gamma_\psi
T^\beta_{\alpha\gamma}
&=
g_{\beta\psi}
\delta^\gamma_\phi
\frac{1}{\left(\mathbb{D}-1\right)} \delta^\beta_\alpha T_{\gamma}
-g_{\beta\phi}\delta^\gamma_\psi
\frac{1}{\left(\mathbb{D}-1\right)} \delta^\beta_\alpha T_{\gamma}
\\
T_{\psi\alpha\phi}
- T_{\phi\alpha\psi}
&=
\frac{1}{\left(\mathbb{D}-1\right)}
\left(g_{\alpha\psi}
T_{\phi}
-g_{\alpha\phi}
T_{\psi}
\right)
\end{align*}
!!!!!!!!!!!!!!!!!!!!!!!!!
\subsection*{็ฌฌ 1 ๆญฅ๏ผ่ญๆๆจ็ๆน็จๅผ้ฑๅซ $T_{[\psi\alpha\phi]} = 0$}
ๆๅ็็ฎๆจๆฏ่ญๆ้ๅๆน็จๅผ็่ผชๆๅ๏ผcyclic sum๏ผ็บ้ถ๏ผๅณ๏ผ
\[
(T_{\psi\alpha\phi} - T_{\phi\alpha\psi}) + (T_{\alpha\phi\psi} - T_{\psi\phi\alpha}) + (T_{\phi\psi\alpha} - T_{\alpha\psi\phi}) = 0
\]
\noindent ๅๅงๆน็จๅผ:
\begin{equation}
T_{\psi\alpha\phi} - T_{\phi\alpha\psi} = \frac{1}{\mathbb{D}-1} (g_{\alpha\psi} T_{\phi} - g_{\alpha\phi} T_{\psi}) \label{eq:original}
\end{equation}
็ฌฌไธๆฌก่ผชๆ ($\psi \to \alpha \to \phi \to \psi$):
\begin{equation}
T_{\alpha\phi\psi} - T_{\psi\phi\alpha} = \frac{1}{\mathbb{D}-1} (g_{\phi\alpha} T_{\psi} - g_{\phi\psi} T_{\alpha}) \label{eq:perm1}
\end{equation}
็ฌฌไบๆฌก่ผชๆ ($\alpha \to \phi \to \psi \to \alpha$):
\begin{equation}
T_{\phi\psi\alpha} - T_{\alpha\psi\phi} = \frac{1}{\mathbb{D}-1} (g_{\psi\phi} T_{\alpha} - g_{\psi\alpha} T_{\phi}) \label{eq:perm2}
\end{equation}
็พๅจ๏ผๆๅๅฐ้ไธๅๆน็จๅผ \eqref{eq:original}, \eqref{eq:perm1}, \eqref{eq:perm2} ๅ
จ้จ็ธๅ ใ
\paragraph{่งๅฏๅณๅด (RHS) ็ๅ๏ผ}
\[
\begin{split}
\text{RHS Sum} = \frac{1}{\mathbb{D}-1} [ &(g_{\alpha\psi} T_{\phi} - g_{\alpha\phi} T_{\psi}) \\
+ &(g_{\phi\alpha} T_{\psi} - g_{\phi\psi} T_{\alpha}) \\
+ &(g_{\psi\phi} T_{\alpha} - g_{\psi\alpha} T_{\phi}) ]
\end{split}
\]
็ฑๆผๅบฆ่ฆๅผต้ๆฏๅฐ็จฑ็ ($g_{\alpha\phi} = g_{\phi\alpha}$)๏ผๆๅๅฏไปฅ้ๆฐ็ตๅ้ไบ้
๏ผ
\[
\text{RHS Sum} = \frac{1}{\mathbb{D}-1} [ (g_{\alpha\psi} - g_{\psi\alpha}) T_{\phi} + (g_{\phi\alpha} - g_{\alpha\phi}) T_{\psi} + (g_{\psi\phi} - g_{\phi\psi}) T_{\alpha} ] = 0
\]
ๅณๅดๆๆ้
ๅฎๅ
จๆตๆถ๏ผๅ
ถๅ็บ้ถใ
\paragraph{่งๅฏๅทฆๅด (LHS) ็ๅ๏ผ}
็ฑๆผๅณๅด็ๅ็บ้ถ๏ผๅทฆๅด็ๅไนๅฟ
้ ็บ้ถ๏ผ
\[
(T_{\psi\alpha\phi} - T_{\phi\alpha\psi}) + (T_{\alpha\phi\psi} - T_{\psi\phi\alpha}) + (T_{\phi\psi\alpha} - T_{\alpha\psi\phi}) = 0
\]
็พๅจ๏ผๆๅๅฉ็จๆ็ๅผต้ๅจๅ
ถๆๅพๅ
ฉๅๆๆจไธ็ๅบๆฌๅๅฐ็จฑๆง ($T_{abc} = -T_{acb}$) ไพๆนๅฏซๅธถๆ่ฒ ่็้
๏ผ
\begin{align*}
-T_{\phi\alpha\psi} &= +T_{\phi\psi\alpha} \\
-T_{\psi\phi\alpha} &= +T_{\psi\alpha\phi} \\
-T_{\alpha\psi\phi} &= +T_{\alpha\phi\psi}
\end{align*}
ๅฐ้ไบไปฃๅ LHS ็ๅไธญ๏ผ
\[
(T_{\psi\alpha\phi} + T_{\phi\psi\alpha}) + (T_{\alpha\phi\psi} + T_{\psi\alpha\phi}) + (T_{\phi\psi\alpha} + T_{\alpha\phi\psi}) = 0
\]
ๆด็ๅพๅพๅฐ๏ผ
\[
2(T_{\psi\alpha\phi} + T_{\alpha\phi\psi} + T_{\phi\psi\alpha}) = 0
\]
้ๅฐฑ็ดๆฅ่ญๆไบ๏ผ
\begin{equation}
T_{\psi\alpha\phi} + T_{\alpha\phi\psi} + T_{\phi\psi\alpha} = 0 \label{eq:cyclic_sum_zero}
\end{equation}
้ๆๅณ่ๆ็ๅผต้็ๅ
จๅๅฐ็จฑ้จๅ $T_{[\psi\alpha\phi]}$ ๅฟ
ๅฎ็บ้ถใ้ไธๆฏไธๅๅ่จญ๏ผ่ๆฏๆจๆๆไพๆน็จๅผ็ไธๅ็ดๆฅๆธๅญธๆจ่ซใ
\subsection*{็ฌฌ 2 ๆญฅ๏ผๅฉ็จ $T_{[\psi\alpha\phi]} = 0$ ่งฃๅบๅๅฐ็จฑๅฝขๅผ}
็พๅจๆๅๆไบๅ
ฉๅๆน็จๅผ๏ผ
\begin{enumerate}
\item ๆจ็ๅๅงๆน็จๅผ๏ผ็ถ้ๅๅฐ็จฑๆงๆนๅฏซ๏ผ๏ผ
\begin{equation}
T_{\psi\alpha\phi} + T_{\phi\psi\alpha} = \frac{1}{\mathbb{D}-1} (g_{\alpha\psi} T_{\phi} - g_{\alpha\phi} T_{\psi}) \label{eq:original_rewritten}
\end{equation}
\item ๆๅๅๅ่ญๆ็่ผชๆๅ็บ้ถ๏ผ
\begin{equation}
T_{\psi\alpha\phi} + T_{\alpha\phi\psi} + T_{\phi\psi\alpha} = 0 \label{eq:cyclic_sum_zero_2}
\end{equation}
\end{enumerate}
ๅพ็ฌฌไบๅๆน็จๅผ \eqref{eq:cyclic_sum_zero_2}๏ผๆๅๅฏไปฅๅพๅฐ๏ผ
\[
T_{\phi\psi\alpha} = -T_{\psi\alpha\phi} - T_{\alpha\phi\psi}
\]
ๅฐ้ๅ็ตๆไปฃๅ
ฅ็ฌฌไธๅๆน็จๅผ \eqref{eq:original_rewritten} ็ๅทฆๅด๏ผ
\[
T_{\psi\alpha\phi} + (-T_{\psi\alpha\phi} - T_{\alpha\phi\psi}) = \frac{1}{\mathbb{D}-1} (g_{\alpha\psi} T_{\phi} - g_{\alpha\phi} T_{\psi})
\]
\[
-T_{\alpha\phi\psi} = \frac{1}{\mathbb{D}-1} (g_{\alpha\psi} T_{\phi} - g_{\alpha\phi} T_{\psi})
\]
ๅๆฌกไฝฟ็จๅบๆฌๅๅฐ็จฑๆงๆนๅฏซๅทฆๅด๏ผ$-T_{\alpha\phi\psi} = +T_{\alpha\psi\phi}$ใ
\[
T_{\alpha\psi\phi} = \frac{1}{\mathbb{D}-1} (g_{\alpha\psi} T_{\phi} - g_{\alpha\phi} T_{\psi})
\]
้ๅๅฝขๅผๅทฒ็ถๆฏๆ็ต็ญๆกไบใ็บไบไฝฟๅ
ถ็่ตทไพๆด็ฌฆๅๆจๆบๅฏซๆณ๏ผๆๅๅฐๆๆจ้ฒ่ก้ๆฐๆจ่จ๏ผ$\alpha \to \psi, \psi \to \alpha, \phi \to \phi$๏ผ๏ผ
\[
T_{\psi\alpha\phi} = \frac{1}{\mathbb{D}-1} (g_{\psi\alpha} T_{\phi} - g_{\psi\phi} T_{\alpha})
\]
\[
T^\psi_{\alpha\phi} = \frac{1}{\mathbb{D}-1} (\delta^\psi_{\alpha} T_{\phi} - \delta^\psi_{\phi} T_{\alpha})
\]
ๆฏไธๅๅ
่ฆๆขไปถ๏ผๅฎๆฌ่บซๅฐฑ่ถณไปฅๅฐๆ็ๅผต้็ๅฝขๅผๅฏไธๅฐ็ขบๅฎ็บๅๅฐ็จฑๆ็ใ
!!!!!!!!!!!!!!!!!!!!!!!!!
\begin{align*}
-\frac{1}{\left(\mathbb{D}-1\right)}\, g^{\mu\gamma}\, T^\eta_{\gamma\eta} \, \delta_\alpha^\nu +
g^{\mu\kappa}T^\nu_{\kappa\alpha}
&=-\frac{1}{\left(\mathbb{D}-1\right)}\, g^{\nu\gamma}\, T^\eta_{\gamma\eta} \, \delta_\alpha^\mu +
g^{\nu\kappa}T^\mu_{\kappa\alpha}
\\
\end{align*}
\begin{align*}
{\frac{1}{\sqrt{-g}} g_{\mu\nu}\left(\sqrt{-g}\,g^{\mu\nu}\right)}_{;\alpha}
&=\frac{1}{\left(\mathbb{D}-1\right)}\, g_{\mu\nu} g^{\mu\gamma}\, T^\eta_{\eta\gamma} \, \delta_\alpha^\nu +
g_{\mu\nu} g^{\mu\nu} T_{\alpha\gamma}^{\gamma} +
g_{\mu\nu}g^{\mu\kappa}T^\nu_{\kappa\alpha}\\
{\frac{1}{\sqrt{-g}} g_{\mu\nu}
\left(\sqrt{-g}\,\right)}_{;\alpha} g^{\mu\nu}
+\frac{1}{\sqrt{-g}} g_{\mu\nu}
\sqrt{-g}\,{g^{\mu\nu}}_{;\alpha}
&=\frac{1}{\left(\mathbb{D}-1\right)}\, \delta^\gamma_\nu \, T^\eta_{\eta\gamma} \, \delta_\alpha^\nu +
\mathbb{D} T_{\alpha\gamma}^{\gamma} +
\delta^\kappa_\nu T^\nu_{\kappa\alpha}\\
{\frac{\mathbb{D}}{\sqrt{-g}}
\left(\sqrt{-g}\,\right)}_{;\alpha}
-\frac{2}{\sqrt{-g}}
\left(
-\frac{1}{2}\sqrt{-g}\, g_{\mu\nu}
{g^{\mu\nu}}_{;\alpha}
\right)
&=\frac{1}{\left(\mathbb{D}-1\right)}T^\eta_{\eta\alpha} +
\mathbb{D} T_{\alpha\gamma}^{\gamma} +
T^\nu_{\nu\alpha}\\
{\frac{\mathbb{D}}{\sqrt{-g}}
\left(\sqrt{-g}\,\right)}_{;\alpha}
-\frac{2}{\sqrt{-g}}
\left(\sqrt{-g}\,\right)_{;\alpha}
&=-\frac{\mathbb{D}\left(\mathbb{D}-2\right)}{\mathbb{D}-1}T^\eta_{\eta\gamma} \\
{\frac{1}{\sqrt{-g}}
\left(\sqrt{-g}\,\right)}_{;\alpha}
&=-\frac{\mathbb{D}}{\mathbb{D}-1}T^\eta_{\eta\gamma}
\end{align*}
\begin{align*}
{\frac{1}{\sqrt{-g}} \left(\sqrt{-g}\,g^{\mu\nu}\right)}_{;\alpha}
&=\frac{1}{\left(\mathbb{D}-1\right)}\, g^{\mu\gamma}\, T^\eta_{\eta\gamma} \, \delta_\alpha^\nu +
g^{\mu\nu} T_{\alpha\gamma}^{\gamma} +
g^{\mu\gamma}T^\nu_{\gamma\alpha}
\\
{\frac{1}{\sqrt{-g}} \left(\sqrt{-g}\right)}_{;\alpha} g^{\mu\nu}
+{g^{\mu\nu}}_{;\alpha}
&=\frac{1}{\left(\mathbb{D}-1\right)}\, g^{\mu\gamma}\, T^\eta_{\eta\gamma} \, \delta_\alpha^\nu +
g^{\mu\nu} T_{\alpha\gamma}^{\gamma} +
g^{\mu\gamma}T^\nu_{\gamma\alpha}
\\
-\frac{\mathbb{D}}{\mathbb{D}-1}T^\eta_{\eta\alpha} g^{\mu\nu}
+{g^{\mu\nu}}_{;\alpha}
&=\frac{1}{\left(\mathbb{D}-1\right)}\, g^{\mu\gamma}\, T^\eta_{\eta\gamma} \, \delta_\alpha^\nu +
g^{\mu\nu} T_{\alpha\gamma}^{\gamma} +
g^{\mu\gamma}T^\nu_{\gamma\alpha}
\\
{g^{\mu\nu}}_{;\alpha}
&=\frac{1}{\left(\mathbb{D}-1\right)}\, g^{\mu\gamma}\, T^\eta_{\eta\gamma} \, \delta_\alpha^\nu
+\frac{\mathbb{D}}{\mathbb{D}-1}T^\eta_{\eta\alpha} g^{\mu\nu}
+ g^{\mu\nu} T_{\alpha\gamma}^{\gamma} +
g^{\mu\gamma}T^\nu_{\gamma\alpha}\\
{g^{\mu\nu}}_{;\alpha}
&=\frac{1}{\left(\mathbb{D}-1\right)}\, g^{\mu\gamma}\, T^\eta_{\eta\gamma} \, \delta_\alpha^\nu
+\frac{1}{\left(\mathbb{D}-1\right)}T^\eta_{\eta\alpha} g^{\mu\nu}+
g^{\mu\gamma}T^\nu_{\gamma\alpha}\\
&=
\frac{1}{\left(\mathbb{D}-1\right)}\,
\cancel{g^{\mu\gamma}\, T_{\gamma} \, \delta_\alpha^\nu }
+\frac{1}{\left(\mathbb{D}-1\right)}T_{\alpha} g^{\mu\nu}+
g^{\mu\gamma}
\frac{1}{\mathbb{D}-1}
\left(
\delta^\nu_{\gamma} T_{\alpha} - \cancel{\delta^\nu_{\alpha} T_{\gamma}}
\right)\\
&=
\frac{1}{\left(\mathbb{D}-1\right)}T_{\alpha} g^{\mu\nu}+
\frac{1}{\mathbb{D}-1}
g^{\mu\gamma}
\delta^\nu_{\gamma} T_{\alpha}
\\
&=
\frac{2}{\left(\mathbb{D}-1\right)}T_{\alpha} g^{\mu\nu}
\end{align*}
\[
T^\psi_{\alpha\phi} = \frac{1}{\mathbb{D}-1} (\delta^\psi_{\alpha} T_{\phi} - \delta^\psi_{\phi} T_{\alpha})
\]
\[
T^\nu_{\gamma\alpha} = \frac{1}{\mathbb{D}-1} (\delta^\nu_{\gamma} T_{\alpha} - \delta^\nu_{\alpha} T_{\gamma})
\]
้ฉ่ญ
\begin{align*}
\sqrt{-g}_{\,;\gamma}
&=-\frac{1}{2}\sqrt{-g}\,g_{\mu\nu} {g^{\mu\nu}}_{;\gamma}\\
&=-\frac{1}{2}\sqrt{-g}\,g_{\mu\nu} \frac{2}{\left(\mathbb{D}-1\right)}T_{\gamma} g^{\mu\nu}\\
&=-\frac{\mathbb{D}}{\left(\mathbb{D}-1\right)}\sqrt{-g}\, T_{\gamma} \\
\end{align*}
Consist!
If
\begin{align*}
\Gamma^\mu_{\alpha\nu}=\tilde{\Gamma}^\mu_{\alpha\nu}+C^\mu_{\alpha\nu}
\end{align*}
Define:
\begin{align*}
C^\mu_{\alpha\nu}&=\frac{1}{\mathbb{D}-1}
\left(
\delta^\mu_\alpha T_\nu
+\delta^\mu_\nu T_\alpha
-g_{\alpha\nu}g^{\mu\sigma} T_\sigma
\right)
\end{align*}
\begin{adjustwidth}{-2cm}{-1.5cm}
\begin{align*}
&{g^{\mu\nu}}_{;\alpha}
-\frac{2}{\left(\mathbb{D}-1\right)}T_{\alpha} g^{\mu\nu}=0
\\=&
{g^{\mu\nu}}_{,\alpha}
+ g^{\kappa\nu} \Gamma_{\kappa\alpha}^\mu + g^{\mu\kappa}\Gamma^\nu_{\kappa\alpha}
-\frac{2}{\left(\mathbb{D}-1\right)}T_{\alpha} g^{\mu\nu}\\
=&{g^{\mu\nu}}_{,\alpha}
+ g^{\kappa\nu} \tilde{\Gamma}_{\kappa\alpha}^\mu
+ g^{\kappa\nu} C_{\kappa\alpha}^\mu
+ g^{\mu\kappa}\tilde{\Gamma}^\nu_{\kappa\alpha}
+ g^{\mu\kappa}C^\nu_{\kappa\alpha}
-\frac{2}{\left(\mathbb{D}-1\right)}T_{\alpha} g^{\mu\nu}\\
=&{g^{\mu\nu}}_{,\alpha}
+ g^{\kappa\nu} \tilde{\Gamma}_{\kappa\alpha}^\mu
+ g^{\kappa\nu} \frac{1}{\mathbb{D}-1}
\left(
\delta^\mu_\kappa T_\alpha
+\delta^\mu_\alpha T_\kappa
-g_{\kappa\alpha}g^{\mu\sigma} T_\sigma
\right)
+ g^{\mu\kappa}\tilde{\Gamma}^\nu_{\kappa\alpha}
+ g^{\mu\kappa}\frac{1}{\mathbb{D}-1}
\left(
\delta^\nu_\kappa T_\alpha
+\delta^\nu_\alpha T_\kappa
-g_{\kappa\alpha}g^{\mu\sigma} T_\sigma
\right)
-\frac{2}{\left(\mathbb{D}-1\right)}T_{\alpha} g^{\mu\nu}\\
=&{g^{\mu\nu}}_{,\alpha}
+ g^{\kappa\nu} \tilde{\Gamma}_{\kappa\alpha}^\mu
+ \frac{1}{\mathbb{D}-1}
\left(
g^{\mu\nu} T_\alpha
+\delta^\mu_\alpha T^\nu
-g^{\kappa\nu}g_{\kappa\alpha} T^\mu
\right)
+ g^{\mu\kappa}\tilde{\Gamma}^\nu_{\kappa\alpha}
+ \frac{1}{\mathbb{D}-1}
\left(
g^{\mu\nu} T_\alpha
+\delta^\nu_\alpha T^\mu
-g^{\mu\kappa}g_{\kappa\alpha} T^\mu
\right)
-\frac{2}{\left(\mathbb{D}-1\right)}T_{\alpha} g^{\mu\nu}\\
=&{g^{\mu\nu}}_{,\alpha}
+ g^{\kappa\nu} \tilde{\Gamma}_{\kappa\alpha}^\mu
+ \frac{1}{\mathbb{D}-1}
\left(
\xcancel{g^{\mu\nu} T_\alpha}
+\cancel{\delta^\mu_\alpha T^\nu}
-\bcancel{\delta^\nu_\alpha T^\mu}
\right)
+ g^{\mu\kappa}\tilde{\Gamma}^\nu_{\kappa\alpha}
+ \frac{1}{\mathbb{D}-1}
\left(
\xcancel{g^{\mu\nu} T_\alpha}
+\bcancel{\delta^\nu_\alpha T^\mu}
-\cancel{\delta^\mu_\alpha T^\mu}
\right)
-\xcancel{\frac{2}{\left(\mathbb{D}-1\right)}T_{\alpha} g^{\mu\nu}}\\
=&{g^{\mu\nu}}_{,\alpha}
+ g^{\kappa\nu} \tilde{\Gamma}_{\kappa\alpha}^\mu
+ g^{\mu\kappa}\tilde{\Gamma}^\nu_{\kappa\alpha}
\end{align*}
\end{adjustwidth}
\noindent If trosion-free, i.e., $T^\alpha_{\beta\gamma}=0$, hence:
\begin{align*}
{g^{\mu\nu}}_{;\alpha} =0
\end{align*}
\noindent is metric compatible.
\noindent On the otherhand, if metric compatible, i.e., ${g^{\mu\nu}}_{;\alpha} =0$, hence:
\begin{align}
0&=\frac{1}{3}\, g^{\mu\gamma}\, T^\eta_{\eta\gamma} \, \delta_\alpha^\nu +
\frac{1}{3} g^{\mu\nu} T_{\gamma\alpha}^{\gamma} +
g^{\mu\kappa}T^\nu_{\kappa\alpha} \label{eq:MT}\\
0&=\delta^\alpha_\nu \frac{1}{3}\, g^{\mu\gamma}\, T^\eta_{\eta\gamma} \, \delta_\alpha^\nu +
\delta^\alpha_\nu \frac{1}{3} g^{\mu\nu} T_{\gamma\alpha}^{\gamma} +
\delta^\alpha_\nu g^{\mu\kappa}T^\nu_{\kappa\alpha} \nonumber\\
0&=\frac{4}{3}\, g^{\mu\gamma}\, T^\eta_{\eta\gamma} +
\frac{1}{3} g^{\mu\nu} T_{\gamma\nu}^{\gamma} +
g^{\mu\kappa}T^\nu_{\kappa\nu} \nonumber\\
0&=- \frac{1}{3}\, g^{\mu\gamma}\, T^\eta_{\eta\gamma} \nonumber\\
0&=T^\eta_{\eta\gamma} \nonumber
\end{align}
\noindent Put back into Eq.\eqref{eq:MT}:
\begin{align*}
0&=0 + 0+g^{\mu\kappa}T^\nu_{\kappa\alpha} \\
0&=T^\nu_{\kappa\alpha}
\end{align*}
\noindent imply torsion-free.\\
\subsection{Contorsion}
\begin{align*}
T^{\mu}_{\alpha\beta} &=\Gamma^{\mu}_{\alpha\beta} -\Gamma^{\mu}_{\beta\alpha} \\
\Gamma^{\mu}_{\alpha\beta} &=\left\{^{\mu}_{\alpha\beta}\right\}+K^{\mu}_{\alpha\beta}
\\
K^{\mu}_{\alpha\beta}
&= \frac{1}{2}g^{\mu\gamma}
\left(T^{\xi}_{\alpha\beta}g_{\xi\gamma}
+ T^{\xi}_{\beta\gamma}g_{\xi\alpha}
+ T^{\xi}_{\alpha\gamma}g_{\xi\beta}\right)
\\
K^{\mu}_{\beta\alpha}
&= \frac{1}{2}g^{\mu\gamma}
\left(T^{\xi}_{\beta\alpha}g_{\xi\gamma}
+ T^{\xi}_{\alpha\gamma}g_{\xi\beta}
+ T^{\xi}_{\beta\gamma}g_{\xi\alpha}
\right)
\\
K^{\mu}_{\alpha\beta} -K^{\mu}_{\beta\alpha}
&=\frac{1}{2}g^{\mu\gamma}
\left(T^{\xi}_{\alpha\beta}g_{\xi\gamma}
+ \cancel{T^{\xi}_{\beta\gamma}g_{\xi\alpha} }
+ \bcancel{T^{\xi}_{\alpha\gamma}g_{\xi\beta}}\right)
-
\frac{1}{2}g^{\mu\gamma}
\left(T^{\xi}_{\beta\alpha}g_{\xi\gamma}
+ \bcancel{T^{\xi}_{\alpha\gamma}g_{\xi\beta}}
+ \cancel{T^{\xi}_{\beta\gamma}g_{\xi\alpha} }
\right)\\
&=g^{\mu\gamma}T^{\xi}_{\alpha\beta}g_{\xi\gamma} =T^{\mu}_{\alpha\beta}
\\
\left\{^{\mu}_{\alpha\beta}\right\}-\left\{^{\mu}_{\beta\alpha}\right\}
&=
\Gamma^{\mu}_{\alpha\beta} -K^{\mu}_{\alpha\beta}
-\Gamma^{\mu}_{\beta\alpha} +K^{\mu}_{\beta\alpha}
=T^{\mu}_{\alpha\beta}-T^{\mu}_{\alpha\beta}=0
\end{align*}
\begin{align*}
{g^{\mu\nu}}_{;\alpha}
&= {g^{\mu\nu}}_{,\alpha} + g^{\beta\nu}\Gamma^{\mu}_{\beta\alpha} + g^{\mu\beta}\Gamma^{\nu}_{\beta\alpha}
\\
&= {g^{\mu\nu}}_{,\alpha}
+ g^{\beta\nu}\left(\left\{^{\mu}_{\beta\alpha} \right\}
+ K^{\mu}_{\beta\alpha}\right)
+ g^{\mu\beta}\left(\left\{^{\nu}_{\beta\alpha}\right\} + K^{\nu}_{\beta\alpha}\right) \\
&= {g^{\mu\nu}}_{,\alpha}
+ g^{\beta\nu}\left\{^{\mu}_{\beta\alpha}\right\}
+ g^{\mu\beta}\left\{^{\nu}_{\beta\alpha}\right\}
+ g^{\beta\nu}\left(\frac{1}{2}g^{\mu\gamma}\left(
T^{\xi}_{\beta\alpha}g_{\xi\gamma}
+ T^{\xi}_{\alpha\gamma}g_{\xi\beta}
+ T^{\xi}_{\beta\gamma}g_{\xi\alpha}
\right)
\right) \\
&\qquad + g^{\mu\beta}\left(\frac{1}{2}g^{\nu\gamma}\left(
T^{\xi}_{\beta\alpha}g_{\xi\gamma}
+ T^{\xi}_{\alpha\gamma}g_{\xi\beta}
+ T^{\xi}_{\beta\gamma}g_{\xi\alpha}
\right)\right)
\\
&= {g^{\mu\nu}}_{,\alpha} + g^{\beta\nu}\left\{^{\mu}_{\beta\alpha}\right\} + g^{\mu\beta}\left\{^{\nu}_{\beta\alpha}\right\} +
\frac{1}{2}g^{\beta\nu}g^{\mu\gamma}\left(
T^{\xi}_{\beta\alpha}g_{\xi\gamma}
+ T^{\xi}_{\alpha\gamma}g_{\xi\beta}
+ T^{\xi}_{\beta\gamma}g_{\xi\alpha}
\right) \\
&\qquad + \frac{1}{2}g^{\mu\beta}g^{\nu\gamma}\left(
T^{\xi}_{\beta\alpha}g_{\xi\gamma}
+ T^{\xi}_{\alpha\gamma}g_{\xi\beta}
+ T^{\xi}_{\beta\gamma}g_{\xi\alpha}
\right)\\
&= {g^{\mu\nu}}_{,\alpha} + g^{\beta\nu}\left\{^{\mu}_{\beta\alpha}\right\} + g^{\mu\beta}\left\{^{\nu}_{\beta\alpha}\right\} +
\frac{1}{2}\left(
g^{\beta\nu}g^{\mu\gamma}T^{\xi}_{\beta\alpha}g_{\xi\gamma}
+ g^{\beta\nu}g^{\mu\gamma}T^{\xi}_{\alpha\gamma}g_{\xi\beta}
+ g^{\beta\nu}g^{\mu\gamma}T^{\xi}_{\beta\gamma}g_{\xi\alpha}
\right) \\
&\qquad + \frac{1}{2}\left(
g^{\mu\beta}g^{\nu\gamma}T^{\xi}_{\beta\alpha}g_{\xi\gamma}
+ g^{\mu\beta}g^{\nu\gamma}T^{\xi}_{\alpha\gamma}g_{\xi\beta}
+ g^{\mu\beta}g^{\nu\gamma}T^{\xi}_{\beta\gamma}g_{\xi\alpha}
\right)\\
&= {g^{\mu\nu}}_{,\alpha} + g^{\beta\nu}\left\{^{\mu}_{\beta\alpha}\right\} + g^{\mu\beta}\left\{^{\nu}_{\beta\alpha}\right\} +
\frac{1}{2}\left(
g^{\beta\nu}\delta^\mu_\xi T^{\xi}_{\beta\alpha}
+ \delta^\nu_\xi g^{\mu\gamma}T^{\xi}_{\alpha\gamma}
+ g^{\beta\nu}g^{\mu\gamma}T^{\xi}_{\beta\gamma}g_{\xi\alpha}
\right) \\
&\qquad + \frac{1}{2}\left(
g^{\mu\beta}\delta^\nu_\xi T^{\xi}_{\beta\alpha}
+ \delta^\mu_\xi g^{\nu\gamma}T^{\xi}_{\alpha\gamma}
+ g^{\mu\beta}g^{\nu\gamma}T^{\xi}_{\beta\gamma}g_{\xi\alpha}
\right)\\
&= {g^{\mu\nu}}_{,\alpha} + g^{\beta\nu}\left\{^{\mu}_{\beta\alpha}\right\} + g^{\mu\beta}\left\{^{\nu}_{\beta\alpha}\right\} +
\frac{1}{2}\left(
g^{\beta\nu} T^{\mu}_{\beta\alpha}
+ g^{\mu\gamma}T^{\nu}_{\alpha\gamma}
+ g^{\beta\nu}g^{\mu\gamma}T^{\xi}_{\beta\gamma}g_{\xi\alpha}
\right) \\
&\qquad + \frac{1}{2}\left(
g^{\mu\beta} T^{\nu}_{\beta\alpha}
+ g^{\nu\gamma}T^{\mu}_{\alpha\gamma}
+ g^{\mu\beta}g^{\nu\gamma}T^{\xi}_{\beta\gamma}g_{\xi\alpha}
\right)\\
&= {g^{\mu\nu}}_{,\alpha} + g^{\beta\nu}\left\{^{\mu}_{\beta\alpha}\right\} + g^{\mu\beta}\left\{^{\nu}_{\beta\alpha}\right\} +
\frac{1}{2}\left(
\cancel{g^{\beta\nu} T^{\mu}_{\beta\alpha} }
+\bcancel{g^{\mu\textcolor{red}{\beta}}T^{\nu}_{\alpha\textcolor{red}{\beta}}}
+ \xcancel{g^{\beta\nu}g^{\mu\gamma}T^{\xi}_{\beta\gamma}g_{\xi\alpha} }
\right) \\
&\qquad + \frac{1}{2}\left(
\bcancel{g^{\mu\beta} T^{\nu}_{\beta\alpha} }
+ \cancel{g^{\nu\textcolor{red}{\beta}}T^{\mu}_{\alpha\textcolor{red}{\beta}}}
+ \xcancel{g^{\mu\textcolor{green}{\gamma}}g^{\nu\textcolor{red}{\beta}}T^{\xi}_{\textcolor{green}{\gamma}\textcolor{red}{\beta}}g_{\xi\alpha}}
\right)\\
&= {g^{\mu\nu}}_{,\alpha} + g^{\beta\nu}\left\{^{\mu}_{\beta\alpha}\right\} + g^{\mu\beta}\left\{^{\nu}_{\beta\alpha}\right\}
\end{align*}
\begin{adjustwidth}{-2cm}{-1.5cm}
\begin{align*}
R^{\alpha}_{\beta\gamma\mu} &= \Gamma^{\alpha}_{\beta\mu,\gamma} - \Gamma^{\alpha}_{\beta\gamma,\mu} + \Gamma^{\alpha}_{\nu\gamma}\Gamma^{\nu}_{\beta\mu} - \Gamma^{\alpha}_{\nu\mu}\Gamma^{\nu}_{\beta\gamma}
\\
&= (\{^{\alpha}_{\beta\mu}\} + K^{\alpha}_{\beta\mu})_{,\gamma} - (\{^{\alpha}_{\beta\gamma}\} + K^{\alpha}_{\beta\gamma})_{,\mu} + (\{^{\alpha}_{\nu\gamma}\} + K^{\alpha}_{\nu\gamma})(\{^{\nu}_{\beta\mu}\} + K^{\nu}_{\beta\mu}) - (\{^{\alpha}_{\nu\mu}\} + K^{\alpha}_{\nu\mu})(\{^{\nu}_{\beta\gamma}\} + K^{\nu}_{\beta\gamma}) \\
&= \{^{\alpha}_{\beta\mu}\}_{,\gamma} + K^{\alpha}_{\beta\mu,\gamma} - \{^{\alpha}_{\beta\gamma}\}_{,\mu} - K^{\alpha}_{\beta\gamma,\mu} + (\{^{\alpha}_{\nu\gamma}\}\{^{\nu}_{\beta\mu}\} + \{^{\alpha}_{\nu\gamma}\}K^{\nu}_{\beta\mu} + K^{\alpha}_{\nu\gamma}\{^{\nu}_{\beta\mu}\} + K^{\alpha}_{\nu\gamma}K^{\nu}_{\beta\mu}) \\
&\qquad - (\{^{\alpha}_{\nu\mu}\}\{^{\nu}_{\beta\gamma}\} + \{^{\alpha}_{\nu\mu}\}K^{\nu}_{\beta\gamma} + K^{\alpha}_{\nu\mu}\{^{\nu}_{\beta\gamma}\} + K^{\alpha}_{\nu\mu}K^{\nu}_{\beta\gamma}) \\
&= \{^{\alpha}_{\beta\mu}\}_{,\gamma} - \{^{\alpha}_{\beta\gamma}\}_{,\mu} + \{^{\alpha}_{\nu\gamma}\}\{^{\nu}_{\beta\mu}\} - \{^{\alpha}_{\nu\mu}\}\{^{\nu}_{\beta\gamma}\} + \textcolor{red}{K^{\alpha}_{\beta\mu,\gamma}}
- K^{\alpha}_{\beta\gamma,\mu}
+ \left(
\textcolor{red}{\{^{\alpha}_{\nu\gamma}\}K^{\nu}_{\beta\mu} }+ K^{\alpha}_{\nu\gamma}\{^{\nu}_{\beta\mu}\} + K^{\alpha}_{\nu\gamma}K^{\nu}_{\beta\mu}
\right) \\
&\qquad + \left(\textcolor{red}{-K^{\alpha}_{\nu\mu}\{^{\nu}_{\beta\gamma}\} }
- \{^{\alpha}_{\nu\mu}\}K^{\nu}_{\beta\gamma} - K^{\alpha}_{\nu\mu}K^{\nu}_{\beta\gamma}\right) \\
&= \{R\}^{\alpha}_{\beta\gamma\mu} +
\textcolor{red}{\left(
K^{\alpha}_{\beta\mu,\gamma}
+\{^{\alpha}_{\nu\gamma}\}K^{\nu}_{\beta\mu}
-\{^{\nu}_{\beta\gamma}\}K^{\alpha}_{\nu\mu}
\right)}
-\left(
K^{\alpha}_{\beta\gamma,\mu}
+\{^{\alpha}_{\nu\mu}\}K^{\nu}_{\beta\gamma}
-\{^{\nu}_{\beta\mu}\}K^{\alpha}_{\nu\gamma}
\right)
+\left(
K^{\alpha}_{\nu\gamma}K^{\nu}_{\beta\mu}
-K^{\alpha}_{\nu\mu}K^{\nu}_{\beta\gamma}
\right)
\\
&= \{R\}^{\alpha}_{\beta\gamma\mu} +
\textcolor{red}{\left(
K^{\alpha}_{\beta\mu,\gamma}
+\{^{\alpha}_{\nu\gamma}\}K^{\nu}_{\beta\mu}
-\{^{\nu}_{\beta\gamma}\}K^{\alpha}_{\nu\mu}
\textcolor{blue}{- \{^{\nu}_{\mu\gamma}\}K^{\alpha}_{\beta\nu}}
\right)}
-\left(
K^{\alpha}_{\beta\gamma,\mu}
+\{^{\alpha}_{\nu\mu}\}K^{\nu}_{\beta\gamma}
-\{^{\nu}_{\beta\mu}\}K^{\alpha}_{\nu\gamma}
\textcolor{blue}{- \{^{\nu}_{\gamma\mu}\}K^{\alpha}_{\beta\nu}}
\right)
+\left(
K^{\alpha}_{\nu\gamma}K^{\nu}_{\beta\mu}
-K^{\alpha}_{\nu\mu}K^{\nu}_{\beta\gamma}
\right)
\\
&= \{R\}^{\alpha}_{\beta\gamma\mu} +
K^{\alpha}_{\beta\mu;\gamma}
-K^{\alpha}_{\beta\gamma;\mu}
+\left(
K^{\alpha}_{\nu\gamma}K^{\nu}_{\beta\mu}
-K^{\alpha}_{\nu\mu}K^{\nu}_{\beta\gamma}
\right)
\end{align*}
\end{adjustwidth}
\begin{align*}
R&=g^{\beta\mu}\delta^\gamma_\alpha R^{\alpha}_{\beta\gamma\mu}
=g^{\beta\mu}\delta^\gamma_\alpha \left(\{R\}^{\alpha}_{\beta\gamma\mu} +
K^{\alpha}_{\beta\mu;\gamma}
-K^{\alpha}_{\beta\gamma;\mu}
+\left(
K^{\alpha}_{\nu\gamma}K^{\nu}_{\beta\mu}
-K^{\alpha}_{\nu\mu}K^{\nu}_{\beta\gamma}
\right)\right)\\
&=g^{\beta\mu}\delta^\gamma_\alpha \{R\}^{\alpha}_{\beta\gamma\mu}
+ g^{\beta\mu}\delta^\gamma_\alpha
K^{\alpha}_{\beta\mu;\gamma}
-g^{\beta\mu}\delta^\gamma_\alpha
K^{\alpha}_{\beta\gamma;\mu}
+\left(
g^{\beta\mu}\delta^\gamma_\alpha
K^{\alpha}_{\nu\gamma}K^{\nu}_{\beta\mu}
-g^{\beta\mu}\delta^\gamma_\alpha
K^{\alpha}_{\nu\mu}K^{\nu}_{\beta\gamma}
\right)\\
&=\{R\}
+ g^{\beta\mu}
K^{\alpha}_{\beta\mu;\alpha}
-g^{\beta\mu}
K^{\alpha}_{\beta\alpha ;\mu}
+\left(
g^{\beta\mu}
K^{\alpha}_{\nu\alpha}K^{\nu}_{\beta\mu}
-g^{\beta\mu}
K^{\alpha}_{\nu\mu}K^{\nu}_{\beta\alpha }
\right)\\
\end{align*}
\begin{align*}
K^{\mu}_{\alpha\beta}
&= \frac{1}{2}g^{\mu\gamma}
\left(T^{\xi}_{\alpha\beta}g_{\xi\gamma}
+ T^{\xi}_{\beta\gamma}g_{\xi\alpha}
+ T^{\xi}_{\alpha\gamma}g_{\xi\beta}\right)
\\
&=\frac{1}{2}\frac{1}{\mathbb{D}-1}g^{\mu\gamma}
\left(
\left(\delta^{\xi}_{\alpha}T_\beta-\delta^{\xi}_{\beta} T_\alpha\right)g_{\xi\gamma} +
\left(\delta^{\xi}_{\beta}T_\gamma-\delta^{\xi}_{\gamma}T_\beta\right)g_{\xi\alpha} +
\left(\delta^{\xi}_{\alpha}T_\gamma-\delta^{\xi}_{\gamma}T_\alpha\right)g_{\xi\beta}
\right)\\
&=\frac{1}{2}\frac{1}{\mathbb{D}-1}g^{\mu\gamma}
\left(
\left(\cancel{g_{\alpha\gamma}}T_\beta-g_{\beta\gamma} T_\alpha\right) +
\left(g_{\beta\alpha}T_\gamma-\cancel{g_{\gamma\alpha}T_\beta}\right) +
\left(g_{\alpha\beta}T_\gamma-g_{\gamma\beta}T_\alpha\right)
\right)\\
&=\frac{1}{\mathbb{D}-1}g^{\mu\gamma}
\left(g_{\alpha\beta}T_\gamma-g_{\gamma\beta}T_\alpha\right)\\
&=\frac{1}{\mathbb{D}-1}
\left(g^{\mu\gamma}g_{\alpha\beta}T_\gamma-\delta^\mu_\beta T_\alpha\right)\\
\end{align*}
\begin{align*}
K^{\alpha}_{\nu\gamma}K^{\nu}_{\beta\mu}
-K^{\alpha}_{\nu\mu}K^{\nu}_{\beta\gamma}
&=\frac{1}{\left(\mathbb{D}-1\right)^2}
\left[
\left(g^{\alpha\xi}g_{\nu\gamma}T_\xi
-\delta^\alpha_\nu T_\gamma\right)
\left(g^{\nu\sigma}g_{\beta\mu}T_\sigma
-\delta^\nu_\beta T_\mu\right)
-
\left(g^{\alpha\sigma}g_{\nu\mu}T_\sigma
-\delta^\alpha_\nu T_\mu\right)
\left(g^{\nu\xi}g_{\beta\gamma}T_\xi
-\delta^\nu_\beta T_\gamma\right)
\right]\\
&=\frac{1}{\left(\mathbb{D}-1\right)^2}
\left[
\left(
g^{\alpha\xi}g_{\nu\gamma}T_\xi
-\delta^\alpha_\nu T_\gamma\right)
\left(g^{\nu\sigma}g_{\beta\mu}T_\sigma
-\delta^\nu_\beta T_\mu\right)
-
\left(g^{\alpha\sigma}g_{\nu\mu}T_\sigma
-\delta^\alpha_\nu T_\mu\right)
\left(g^{\nu\xi}g_{\beta\gamma}T_\xi
-\delta^\nu_\beta T_\gamma\right)
\right]\\
\end{align*}
\begin{align*}
&\left( g^{\alpha\xi}g_{\nu\gamma}T_\xi -\delta^\alpha_\nu T_\gamma\right) \left(g^{\nu\sigma}g_{\beta\mu}T_\sigma -\delta^\nu_\beta T_\mu\right) \\
&= \left(g^{\alpha\xi}g_{\nu\gamma}T_\xi\right) \left(g^{\nu\sigma}g_{\beta\mu}T_\sigma\right) - \left(g^{\alpha\xi}g_{\nu\gamma}T_\xi\right) \left(\delta^\nu_\beta T_\mu\right) - \left(\delta^\alpha_\nu T_\gamma\right) \left(g^{\nu\sigma}g_{\beta\mu}T_\sigma\right) + \left(\delta^\alpha_\nu T_\gamma\right) \left(\delta^\nu_\beta T_\mu\right) \\
&= g^{\alpha\xi} g_{\beta\mu} (g_{\nu\gamma} g^{\nu\sigma}) T_\xi T_\sigma - g^{\alpha\xi} (g_{\nu\gamma} \delta^\nu_\beta) T_\xi T_\mu - (\delta^\alpha_\nu g^{\nu\sigma}) g_{\beta\mu} T_\gamma T_\sigma + (\delta^\alpha_\nu \delta^\nu_\beta) T_\gamma T_\mu \\
&= g^{\alpha\xi} g_{\beta\mu} \delta^\sigma_\gamma T_\xi T_\sigma - g^{\alpha\xi} g_{\beta\gamma} T_\xi T_\mu - g^{\alpha\sigma} g_{\beta\mu} T_\gamma T_\sigma + \delta^\alpha_\beta T_\gamma T_\mu \\
&= g^{\alpha\xi} g_{\beta\mu} T_\xi T_\gamma - g^{\alpha\xi} g_{\beta\gamma} T_\xi T_\mu - g^{\alpha\sigma} g_{\beta\mu} T_\sigma T_\gamma + \delta^\alpha_\beta T_\gamma T_\mu \\
&= g^{\alpha\xi} g_{\beta\mu} T_\xi T_\gamma - g^{\alpha\xi} g_{\beta\gamma} T_\xi T_\mu - g^{\alpha\xi} g_{\beta\mu} T_\xi T_\gamma + \delta^\alpha_\beta T_\gamma T_\mu \quad (\text{ๅฐๅๆๆจ } \sigma \to \xi) \\
&= - g^{\alpha\xi} g_{\beta\gamma} T_\xi T_\mu + \delta^\alpha_\beta T_\gamma T_\mu \\
&= \delta^\alpha_\beta T_\gamma T_\mu - g^{\alpha\xi} g_{\beta\gamma} T_\xi T_\mu
\end{align*}
\begin{align*}
&\left(g^{\alpha\sigma}g_{\nu\mu}T_\sigma -\delta^\alpha_\nu T_\mu\right) \left(g^{\nu\xi}g_{\beta\gamma}T_\xi -\delta^\nu_\beta T_\gamma\right) \\
&= \left(g^{\alpha\sigma}g_{\nu\mu}T_\sigma\right) \left(g^{\nu\xi}g_{\beta\gamma}T_\xi\right) - \left(g^{\alpha\sigma}g_{\nu\mu}T_\sigma\right) \left(\delta^\nu_\beta T_\gamma\right) - \left(\delta^\alpha_\nu T_\mu\right) \left(g^{\nu\xi}g_{\beta\gamma}T_\xi\right) + \left(\delta^\alpha_\nu T_\mu\right) \left(\delta^\nu_\beta T_\gamma\right) \\
&= g^{\alpha\sigma} g_{\beta\gamma} (g_{\nu\mu} g^{\nu\xi}) T_\sigma T_\xi - g^{\alpha\sigma} (g_{\nu\mu} \delta^\nu_\beta) T_\sigma T_\gamma - (\delta^\alpha_\nu g^{\nu\xi}) g_{\beta\gamma} T_\mu T_\xi + (\delta^\alpha_\nu \delta^\nu_\beta) T_\mu T_\gamma \\
&= g^{\alpha\sigma} g_{\beta\gamma} \delta^\xi_\mu T_\sigma T_\xi - g^{\alpha\sigma} g_{\beta\mu} T_\sigma T_\gamma - g^{\alpha\xi} g_{\beta\gamma} T_\mu T_\xi + \delta^\alpha_\beta T_\mu T_\gamma \\
&= g^{\alpha\sigma} g_{\beta\gamma} T_\sigma T_\mu - g^{\alpha\sigma} g_{\beta\mu} T_\sigma T_\gamma - g^{\alpha\xi} g_{\beta\gamma} T_\mu T_\xi + \delta^\alpha_\beta T_\mu T_\gamma \\
&= g^{\alpha\sigma} g_{\beta\gamma} T_\sigma T_\mu - g^{\alpha\sigma} g_{\beta\mu} T_\sigma T_\gamma - g^{\alpha\sigma} g_{\beta\gamma} T_\mu T_\sigma + \delta^\alpha_\beta T_\mu T_\gamma \quad (\text{ๅฐๅๆๆจ } \xi \to \sigma) \\
&= - g^{\alpha\sigma} g_{\beta\mu} T_\sigma T_\gamma + \delta^\alpha_\beta T_\mu T_\gamma \\
&= \delta^\alpha_\beta T_\mu T_\gamma - g^{\alpha\sigma} g_{\beta\mu} T_\sigma T_\gamma
\end{align*}
\begin{align*}
&\left( g^{\alpha\xi}g_{\nu\gamma}T_\xi -\delta^\alpha_\nu T_\gamma\right) \left(g^{\nu\sigma}g_{\beta\mu}T_\sigma -\delta^\nu_\beta T_\mu\right) - \left(g^{\alpha\sigma}g_{\nu\mu}T_\sigma -\delta^\alpha_\nu T_\mu\right) \left(g^{\nu\xi}g_{\beta\gamma}T_\xi -\delta^\nu_\beta T_\gamma\right) \\
%
&= \left( \delta^\alpha_\beta T_\gamma T_\mu - g^{\alpha\xi} g_{\beta\gamma} T_\xi T_\mu \right) - \left( \delta^\alpha_\beta T_\mu T_\gamma - g^{\alpha\sigma} g_{\beta\mu} T_\sigma T_\gamma \right) \\
%
&= \delta^\alpha_\beta T_\gamma T_\mu - g^{\alpha\xi} g_{\beta\gamma} T_\xi T_\mu - \delta^\alpha_\beta T_\mu T_\gamma + g^{\alpha\sigma} g_{\beta\mu} T_\sigma T_\gamma \\
%
&= \left( \delta^\alpha_\beta T_\gamma T_\mu - \delta^\alpha_\beta T_\mu T_\gamma \right) - g^{\alpha\xi} g_{\beta\gamma} T_\xi T_\mu + g^{\alpha\sigma} g_{\beta\mu} T_\sigma T_\gamma \\
%
&= 0 - g^{\alpha\xi} g_{\beta\gamma} T_\xi T_\mu + g^{\alpha\sigma} g_{\beta\mu} T_\sigma T_\gamma \quad (\text{ๅ่จญ } T \text{ ๅ้ๅฏไบคๆ}) \\
%
&= g^{\alpha\sigma} g_{\beta\mu} T_\sigma T_\gamma - g^{\alpha\xi} g_{\beta\gamma} T_\xi T_\mu \\
%
&= g^{\alpha\xi} g_{\beta\mu} T_\xi T_\gamma - g^{\alpha\xi} g_{\beta\gamma} T_\xi T_\mu \quad (\text{ๅฐๅๆๆจ } \sigma \to \xi) \\
%
&= g^{\alpha\xi} T_\xi (g_{\beta\mu} T_\gamma - g_{\beta\gamma} T_\mu)
\end{align*}
\begin{align*}
\delta^\gamma_\alpha g^{\alpha\xi} T_\xi (g_{\beta\mu} T_\gamma - g_{\beta\gamma} T_\mu)
&=g^{\gamma\xi} T_\xi (g_{\beta\mu} T_\gamma - g_{\beta\gamma} T_\mu)\\
&= g^{\gamma\xi} T_\xi g_{\beta\mu} T_\gamma
- g^{\gamma\xi} T_\xi g_{\beta\gamma} T_\mu
\end{align*}
\begin{align*}
g^{\beta\mu}\delta^\gamma_\alpha g^{\alpha\xi} T_\xi (g_{\beta\mu} T_\gamma - g_{\beta\gamma} T_\mu)
&= g^{\beta\mu}\left(g^{\gamma\xi} T_\xi g_{\beta\mu} T_\gamma
- g^{\gamma\xi} T_\xi g_{\beta\gamma} T_\mu\right)\\
&= g^{\beta\mu}g^{\gamma\xi} T_\xi g_{\beta\mu} T_\gamma
-g^{\beta\mu} g^{\gamma\xi} T_\xi g_{\beta\gamma} T_\mu\\
&= \mathbb{D}g^{\gamma\xi} T_\xi T_\gamma
- g^{\gamma\xi} T_\xi T_\gamma\\
&=\left( \mathbb{D}-1\right)
g^{\gamma\xi} T_\xi T_\gamma
\end{align*}
\begin{align*}
C^\mu_{\alpha\beta}&=\frac{1}{\mathbb{D}-1}
\left(
\delta^\mu_\alpha T_\beta
+\delta^\mu_\beta T_\alpha
-g_{\mu\alpha}g^{\mu\gamma} T_\gamma
\right)
\end{align*}
\begin{align*}
\Gamma^\mu_{\alpha\beta}
&=\tilde{\Gamma}^\mu_{\alpha\beta}+C^\mu_{\alpha\beta}
=\tilde{\left\{^\mu_{\alpha\beta}\right\}}+K^\mu_{\alpha\beta}+C^\mu_{\alpha\beta}\\
&=\tilde{\left\{^\mu_{\alpha\beta}\right\}}+\frac{1}{\mathbb{D}-1}
\left(
\cancel{g^{\mu\gamma}g_{\alpha\beta}T_\gamma}-\bcancel{\delta^\mu_\beta T_\alpha}\right)
+\frac{1}{\mathbb{D}-1}
\left(
\delta^\mu_\alpha T_\beta
+\bcancel{\delta^\mu_\beta T_\alpha}
-\cancel{g_{\mu\alpha}g^{\mu\gamma} T_\gamma}
\right)\\
&=\tilde{\left\{^\mu_{\alpha\beta}\right\}}+
\underbrace{\frac{1}{\mathbb{D}-1}\delta^\mu_\alpha T_\beta}_{D^\mu_{\alpha\beta}}
\end{align*}
\begin{adjustwidth}{-2cm}{-1.5cm}
\begin{align*}
R^{\alpha}_{\beta\gamma\mu}
&=\{R\}^{\alpha}_{\beta\gamma\mu} +
D^{\alpha}_{\beta\mu;\gamma}
-D^{\alpha}_{\beta\gamma;\mu}
+\left(
D^{\alpha}_{\nu\gamma}D^{\nu}_{\beta\mu}
-D^{\alpha}_{\nu\mu}D^{\nu}_{\beta\gamma}
\right)
\\
&= \{R\}^{\alpha}_{\beta\gamma\mu} +
\frac{1}{\mathbb{D}-1}\delta^\alpha_\beta T_{\mu;\gamma}
-
\frac{1}{\mathbb{D}-1}\delta^\alpha_\beta T_{\gamma;\mu}
+\frac{1}{\left(\mathbb{D}-1\right)^2}\left(
\cancel{
\delta^\alpha_\nu T_\gamma
\delta^\nu_\beta T_\mu}
-
\cancel{\delta^\alpha_\nu T_\mu
\delta^\nu_\beta T_\gamma}
\right)
\end{align*}
\end{adjustwidth}
\begin{align*}
R_{\beta\mu}&=\delta^\gamma_\alpha R^{\alpha}_{\beta\gamma\mu}\\
&=\delta^\gamma_\alpha \left(\{R\}^{\alpha}_{\beta\gamma\mu} +
\frac{1}{\mathbb{D}-1}\delta^\alpha_\beta T_{\mu;\gamma}
-
\frac{1}{\mathbb{D}-1}\delta^\alpha_\beta T_{\gamma;\mu}\right)\\
&=\{R\}_{\beta\mu} +
\delta^\gamma_\alpha\frac{1}{\mathbb{D}-1}\delta^\alpha_\beta T_{\mu;\gamma}
-
\delta^\gamma_\alpha\frac{1}{\mathbb{D}-1}\delta^\alpha_\beta T_{\gamma;\mu}\\
&=\{R\}_{\beta\mu} +
\frac{1}{\mathbb{D}-1} T_{\mu;\beta}
-
\frac{1}{\mathbb{D}-1} T_{\beta;\mu}
\end{align*}
\begin{align*}
R_{\beta\mu}-R_{\mu\beta}
&=\left(
\cancel{\{R\}_{\beta\mu}} +
\frac{1}{\mathbb{D}-1} T_{\mu;\beta}
-
\frac{1}{\mathbb{D}-1} T_{\beta;\mu}
\right)
-\left(
\cancel{\{R\}_{\mu\beta}} +
\frac{1}{\mathbb{D}-1} T_{\beta;\mu}
-
\frac{1}{\mathbb{D}-1} T_{\mu;\beta}
\right)\\
&=\frac{2}{\mathbb{D}-1}
\left(T_{\mu;\beta}
- T_{\beta;\mu}
\right)\\
&=\frac{2}{\mathbb{D}-1}
\left(T_{\mu,\beta}
- T_{\beta,\mu}
\right)
\end{align*}
\begin{align*}
R&=g^{\beta\mu}\delta^\gamma_\alpha R^{\alpha}_{\beta\gamma\mu}\\
&=g^{\beta\mu}\delta^\gamma_\alpha \left(\{R\}^{\alpha}_{\beta\gamma\mu} +
\frac{1}{\mathbb{D}-1}\delta^\alpha_\beta T_{\mu;\gamma}
-
\frac{1}{\mathbb{D}-1}\delta^\alpha_\beta T_{\gamma;\mu}\right)\\
&=\{R\} +
g^{\beta\mu}\delta^\gamma_\alpha\frac{1}{\mathbb{D}-1}\delta^\alpha_\beta T_{\mu;\gamma}
-
g^{\beta\mu}\delta^\gamma_\alpha\frac{1}{\mathbb{D}-1}\delta^\alpha_\beta T_{\gamma;\mu}\\
&=\{R\} +
\cancel{g^{\gamma\mu}\frac{1}{\mathbb{D}-1} T_{\mu;\gamma}}
-
\cancel{g^{\gamma\mu}\frac{1}{\mathbb{D}-1} T_{\gamma;\mu}}\\
&=\{R\}
\end{align*}
\begin{align*}
\left(t_{GR}\right)^\gamma_\varepsilon
&=\frac{1}{2\kappa} \left(g^{\beta\mu}R^\gamma_{\beta\varepsilon\mu}
+g^{\beta\gamma}\delta^\mu_\alpha R^\alpha_{\beta\mu\varepsilon}-\delta^\gamma_\varepsilon R \right)\sqrt{-g} \\
&=\frac{1}{2\kappa} \left(g^{\beta\mu}\delta^\gamma_\alpha R^\alpha_{\beta\varepsilon\mu}
-g^{\beta\gamma}\delta^\mu_\alpha R^\alpha_{\beta\varepsilon\mu}-\delta^\gamma_\varepsilon R \right)\sqrt{-g} \\
&=\frac{1}{2\kappa} \left(
\left(
g^{\beta\mu}\delta^\gamma_\alpha
-g^{\beta\gamma}\delta^\mu_\alpha
\right)R^\alpha_{\beta\varepsilon\mu}-\delta^\gamma_\varepsilon R \right)\sqrt{-g} \\
&=\frac{1}{2\kappa} \left(
\left(
g^{\beta\mu}\delta^\gamma_\alpha
-g^{\beta\gamma}\delta^\mu_\alpha
\right)
\left(
\{R\}^\alpha_{\beta\varepsilon\mu}
+\frac{1}{\mathbb{D}-1}\delta^\alpha_\beta T_{\mu;\varepsilon}
-
\frac{1}{\mathbb{D}-1}\delta^\alpha_\beta T_{\varepsilon;\mu}
\right)
-\delta^\gamma_\varepsilon R \right)\sqrt{-g} \\
&=\frac{1}{2\kappa} \left(
\left(
\left(
g^{\beta\mu}\delta^\gamma_\alpha
-g^{\beta\gamma}\delta^\mu_\alpha
\right)
\{R\}^\alpha_{\beta\varepsilon\mu}
+\left(
g^{\beta\mu}\delta^\gamma_\alpha
-g^{\beta\gamma}\delta^\mu_\alpha
\right)
\frac{1}{\mathbb{D}-1}\delta^\alpha_\beta T_{\mu;\varepsilon}
-
\left(
g^{\beta\mu}\delta^\gamma_\alpha
-g^{\beta\gamma}\delta^\mu_\alpha
\right)
\frac{1}{\mathbb{D}-1}\delta^\alpha_\beta T_{\varepsilon;\mu}
\right)
-\delta^\gamma_\varepsilon R \right)\sqrt{-g} \\
&=\frac{1}{2\kappa} \left(
\left(
2g^{\beta\mu}\delta^\gamma_\alpha
\{R\}^\alpha_{\beta\varepsilon\mu}
+\left(
g^{\beta\mu}\delta^\gamma_\beta
-g^{\beta\gamma}\delta^\mu_\beta
\right)
\frac{1}{\mathbb{D}-1}T_{\mu;\varepsilon}
-
\left(
g^{\beta\mu}\delta^\gamma_\beta
-g^{\beta\gamma}\delta^\mu_\beta
\right)
\frac{1}{\mathbb{D}-1} T_{\varepsilon;\mu}
\right)
-\delta^\gamma_\varepsilon R \right)\sqrt{-g} \\
&=\frac{1}{2\kappa} \left(
\left(
2g^{\beta\mu}\delta^\gamma_\alpha
\{R\}^\alpha_{\beta\varepsilon\mu}
+\left(
g^{\gamma\mu}
-g^{\mu\gamma}
\right)
\frac{1}{\mathbb{D}-1}T_{\mu;\varepsilon}
-
\left(
g^{\gamma\mu}
-g^{\mu\gamma}
\right)
\frac{1}{\mathbb{D}-1} T_{\varepsilon;\mu}
\right)
-\delta^\gamma_\varepsilon R \right)\sqrt{-g} \\
&=\frac{1}{2\kappa} \left(
2g^{\beta\mu}\delta^\gamma_\alpha
\{R\}^\alpha_{\beta\varepsilon\mu}
-\delta^\gamma_\varepsilon R \right)\sqrt{-g} \\
&=\frac{1}{2\kappa} \left(
2g^{\beta\mu}
\{R\}^\gamma_{\beta\varepsilon\mu}
-\delta^\gamma_\varepsilon R \right)\sqrt{-g}
\end{align*}
\subsection{GR-Vielbeins}
\noindent The vielbein formalism chooses a new basis frame $\{\hat{e}_a\}$ rather than a natural basis $\{\partial_\alpha\}$,
\begin{align} \label{eq:viel}
\partial_\mu &=e_\mu^a \hat{e}_a
\end{align}
\noindent , where $e_\mu^a$ is transformation called frame field (or vierbein field). Clearly, each point of frame field is an element in $GL(n,\mathbb{R})$ group. We choose the frame field statisfies:
\begin{align}\label{eq:g_viel}
g_{\mu\nu}&= e_\mu^a e_\nu^b\eta_{ab}
\end{align}
\noindent The inverse transformation $e^\mu_a$:
\begin{align*}
e^\mu_a e^a_\nu=\delta^\mu_\nu\,\,\, &and \,\,\,e^\mu_a e^b_\mu=\delta^a_b
\end{align*}
\noindent Define $e=det(e_\mu^a)$, we have:
\begin{align*}
g=det(g_{\mu\nu})\underbrace{=}_{\eqref{eq:g_viel}}det(e_\mu^a e_\nu^b\eta_{ab})&=det(e_\mu^a )det(e_\nu^b)det(\eta_{ab})= e\, e\, (-1) \\
&\to e=\sqrt{-g}
\end{align*}
\noindent Recall the definition of tangent connection$\Gamma_{\alpha \mu}^\beta$:
\begin{align*}
\nabla_\mu \partial_\alpha=\Gamma_{\alpha \mu}^\beta \partial_\beta
\end{align*}
\noindent We define the spin connection $\omega_{a \mu}^b$ in similar way:
\begin{align*}
\nabla_\mu \hat{e}_a=\omega_{a \mu}^b \hat{e}_b
\end{align*}
\begin{align*}
\mathfrak{g}&=\mathfrak{h}\oplus \mathfrak{p}\\
\omega&=W+\theta\\
\omega&:TM\to \mathfrak{g}, \text{eg, }\mathbb{R}^4\ltimes SO(1,3) \\
W&:TM\to \mathfrak{h}, \text{eg, }SO(1,3)\\
\theta&:TM\to \mathfrak{p}, \text{eg, }\mathbb{R}^4\\
\\\\
\nabla_\mu \hat{e}_a&=\omega_{a \mu}^b \hat{e}_b\\
&=\left(\omega_{\mu}\right)^b_a \hat{e}_b\\
&=\left(\omega_{\mu}^\mathfrak{i} \hat{T}_{\mathfrak{i}} \right)^b_a \hat{e}_b\\
&=\left(W_{\mu}^\mathfrak{ab} \hat{T}_{\mathfrak{ab}}+\theta_\mu^{\mathfrak{a}}\hat{T}_{\mathfrak{a}} \right)^b_a \hat{e}_b\\
&=W_{\mu}^\mathfrak{ab}\left( \hat{T}_{\mathfrak{ab}} \right)^b_a \hat{e}_b
+\theta_\mu^{\mathfrak{a}}\left(\hat{T}_{\mathfrak{a}} \right)^b_a \hat{e}_b\\
\end{align*}
\begin{align*}
T^a&=d\theta^a +W^a_b\wedge e^b\\
T^a_{\mu\nu}&=e^a_{\nu,\mu}- +\omega^a_b\wedge e^b\\
\end{align*}
\noindent The relation between $\Gamma_{\alpha \mu}^\beta$ and $\omega_{a \mu}^b$:
\begin{align*}
\nabla_\mu \partial_\alpha &\underbrace{=}_{\eqref{eq:viel}} \nabla_\mu \left( e^a_\alpha \hat{e}_a \right)=e^a_{\alpha,\mu} \hat{e}_a +e^a_\alpha\nabla_\mu\hat{e}_a=e^a_{\alpha,\mu} \hat{e}_a +e^a_\alpha\omega_{a \mu}^b \hat{e}_b \nonumber\\
&=\Gamma_{\alpha \mu}^\beta \partial_\beta=\Gamma_{\alpha \mu}^\beta e^b_\beta \hat{e}_b \nonumber \\
&\to \left(e^b_{\alpha,\mu} +e^a_\alpha\omega_{a \mu}^b -
\Gamma_{\alpha \mu}^\beta e^b_\beta \right)\hat{e}_b=0 \nonumber \\
&\to e^b_{\alpha,\mu} +e^a_\alpha\omega_{a \mu}^b -
\Gamma_{\alpha \mu}^\beta e^b_\beta=0
\end{align*}
\noindent We can derive 3 useful formula:
\begin{align}
e^b_{\alpha,\mu}&=e^b_\beta \Gamma_{\alpha \mu}^\beta -e^a_\alpha\omega_{a \mu}^b \label{eq:frame,}\\
\Gamma_{\alpha \mu}^\beta&=e^\beta_b e^a_\alpha\omega_{a \mu}^b +e^\beta_b e^b_{\alpha,\mu} \label{eq:Gamma_omega}\\
\omega_{a \mu}^b&=e_a^\alpha e^b_\beta \Gamma_{\alpha \mu}^\beta -e_a^\alpha e^b_{\alpha,\mu} \label{eq:omega_Gamma}
\end{align}
\noindent Since $e_a^\alpha e^b_{\alpha}=\delta^b_a$, then $-e_a^\alpha e^b_{\alpha,\mu}=e_{a,\mu}^\alpha e^b_{\alpha}$. The Eq.\eqref{eq:omega_Gamma} can be rewritten:
\begin{align}
\omega_{a \mu}^b&=e_a^\alpha e^b_\beta \Gamma_{\alpha \mu}^\beta +e_{a,\mu}^\alpha e^b_{\alpha} \nonumber\\
\to e_b^{\gamma} \omega_{a \mu}^b&=e_b^{\gamma} e_a^\alpha e^b_\beta \Gamma_{\alpha \mu}^\beta +e_{a,\mu}^\alpha e^b_{\alpha} e_b^{\gamma} \nonumber\\
\to e_b^{\gamma} \omega_{a \mu}^b&= e_a^\alpha \Gamma_{\alpha \mu}^\gamma +e_{a,\mu}^\gamma \nonumber\\
\to e_{a,\mu}^\gamma &=e_b^{\gamma} \omega_{a \mu}^b- e_a^\alpha \Gamma_{\alpha \mu}^\gamma \label{eq:-frame,}
\end{align}
\noindent Since frame field takes value in $GL$ group, the spin connection $\omega_{a \mu}^b$ is $\frak{gl}$-value 1-form. Next, we will derive the relation between the tangent curvature $R^\kappa_{\lambda\omega\sigma}$ and the spin curvature $\mathscr{R}^a_{b\omega\sigma}$. The definition of these curvature are:
\begin{align*}
R^\kappa_{\lambda\omega\sigma} &= \Gamma^\kappa_{\lambda\sigma,\omega} - \Gamma^\kappa_{\lambda\omega,\sigma} + \Gamma^\kappa_{\nu\omega} \Gamma^\nu_{\lambda\sigma} - \Gamma^\kappa_{\nu\sigma} \Gamma^\nu_{\lambda\omega}\\
\mathscr{R}^a_{b\omega\sigma} &=\omega^a_{b\sigma,\omega} - \omega^a_{b\omega,\sigma} + \omega^a_{c\omega}\omega^c_{b\sigma} - \omega^a_{c\sigma} \omega^c_{b\omega}
\end{align*}
\noindent First, we take partial derivative on Eq.\eqref{eq:Gamma_omega}:
\begin{adjustwidth}{-2cm}{-1.5cm}
\begin{align*}
\Gamma^\kappa_{\lambda\sigma,\omega}
&=\left( e^\kappa_a e^b_\lambda \omega_{b \sigma}^a +e^\kappa_b e^b_{\lambda,\sigma} \right)_{,\omega}\\
&=e^\kappa_{a,\omega} e^b_\lambda \omega_{b \sigma}^a +
e^\kappa_a e^b_{\lambda,\omega} \omega_{b \sigma}^a +
e^\kappa_a e^b_\lambda \omega_{b \sigma,\omega}^a +
e^\kappa_{b,\omega} e^b_{\lambda,\sigma}+
e^\kappa_b e^b_{\lambda,\sigma\omega}\\
&=
\underbrace{\left(e_c^{\kappa} \omega_{a \omega}^c- e_a^\eta \Gamma_{\eta \omega}^\kappa \right)}_{\eqref{eq:-frame,}} e^b_\lambda \omega_{b \sigma}^a +
e^\kappa_a \underbrace{\left(e^b_\eta\Gamma_{\lambda \omega}^\eta -e^c_\lambda\omega_{c \omega}^b \right)}_{\eqref{eq:frame,}} \omega_{b \sigma}^a +
e^\kappa_a e^b_\lambda \omega_{b \sigma,\omega}^a +
\underbrace{\left(e_c^{\kappa} \omega_{b \omega}^c- e_b^\eta \Gamma_{\eta \omega}^\kappa \right)}_{\eqref{eq:-frame,}}
\underbrace{\left(e^b_\gamma \Gamma_{\lambda\sigma}^\gamma -e^d_\lambda\omega_{d \sigma}^b \right)}_{\eqref{eq:frame,}}+
e^\kappa_b e^b_{\lambda,\sigma\omega}
\end{align*}
\end{adjustwidth}
\noindent Expand and rearrange:
\begin{align*}
\Gamma^\kappa_{\lambda\sigma,\omega}
=
\left(e_c^{\kappa} \omega_{a \omega}^c e^b_\lambda \omega_{b \sigma}^a- e_a^\eta \Gamma_{\eta \omega}^\kappa e^b_\lambda \omega_{b \sigma}^a \right) &+
\left( e^\kappa_a e^b_\eta\Gamma_{\lambda \omega}^\eta \omega_{b \sigma}^a-e^\kappa_a e^c_\lambda\omega_{c \omega}^b \omega_{b \sigma}^a \right) +
e^\kappa_a e^b_\lambda \omega_{b \sigma,\omega}^a \\
&+\left(
e_c^{\kappa} \omega_{b \omega}^ce^b_\gamma \Gamma_{\lambda\sigma}^\gamma
-e_c^{\kappa} \omega_{b \omega}^c e^d_\lambda\omega_{d \sigma}^b
-e_b^\eta \Gamma_{\eta \omega}^\kappa e^b_\gamma \Gamma_{\lambda\sigma}^\gamma
+e_b^\eta \Gamma_{\eta \omega}^\kappa e^d_\lambda\omega_{d \sigma}^b
\right)+
e^\kappa_b e^b_{\lambda,\sigma\omega}\\
=
\left( \underbracket[0.4pt][0pt]{e_c^{\kappa} e^b_\lambda \omega_{a \omega}^c \omega_{b \sigma}^a }_{(*a)}
- \underbracket[0.4pt][0pt]{e_a^\eta e^b_\lambda \Gamma_{\eta \omega}^\kappa \omega_{b \sigma}^a}_{(*b)} \right)
&+
\left( e^\kappa_a e^b_\eta\Gamma_{\lambda \omega}^\eta \omega_{b \sigma}^a
-e^\kappa_a e^{\textcolor{red}{b}}_\lambda \omega_{{\textcolor{red}{c}} \sigma}^a \omega_{{\textcolor{red}{b}} \omega}^{\textcolor{red}{c}}\right)
+e^\kappa_a e^b_\lambda \omega_{b \sigma,\omega}^a \\
&+\left(
e_c^{\kappa} e^b_\gamma \Gamma_{\lambda\sigma}^\gamma \omega_{b \omega}^c
-\underbracket[0.4pt][0pt]{ e_c^{\kappa} e^{\textcolor{red}{b}}_\lambda \omega_{{\textcolor{red}{a}} \omega}^c \omega_{\textcolor{red}{b} \sigma}^{\textcolor{red}{a}} }_{(*a)}
\underbracket[0.4pt][0pt]{-\Gamma_{\eta \omega}^\kappa \Gamma_{\lambda\sigma}^\eta}_{Mov\frac{1}{2\kappa} e\,to\,left}
+\underbracket[0.4pt][0pt]{ e_{\textcolor{red}{a}}^\eta e^{\textcolor{red}{b}}_\lambda \Gamma_{\eta \omega}^\kappa \omega_{{\textcolor{red}{b}} \sigma}^{\textcolor{red}{a}} }_{(*b)}
\right)+
e^\kappa_b e^b_{\lambda,\sigma\omega}
\end{align*}
\noindent Remove $(*a)$ and $(*b)$, we have:
\begin{align} \label{eq:Gamma_sw}
\Gamma^\kappa_{\lambda\sigma,\omega} +\Gamma_{\eta \omega}^\kappa \Gamma_{\lambda\sigma}^\eta
=
\left( \underbracket[0.4pt][0pt]{e^\kappa_a e^b_\eta\Gamma_{\lambda \omega}^\eta \omega_{b \sigma}^a}_{(\#a)}
-e^\kappa_a e^b_\lambda \omega_{c \sigma}^a \omega_{b \omega}^c\right)
+e^\kappa_a e^b_\lambda \omega_{b \sigma,\omega}^a
+\left(
\underbracket[0.4pt][0pt]{e_c^{\kappa} e^b_\gamma \Gamma_{\lambda\sigma}^\gamma \omega_{b \omega}^c}_{(\#b)}
\right)+
\underbracket[0.4pt][0pt]{e^\kappa_b e^b_{\lambda,\sigma\omega}}_{(\#c)}
\end{align}
\noindent Similarly, swap $\sigma \Leftrightarrow \omega $:
\begin{align} \label{eq:Gamma_ws}
\Gamma^\kappa_{\lambda\omega,\sigma} +\Gamma_{\eta \sigma}^\kappa \Gamma_{\lambda\omega}^\eta
=
\left( \underbracket[0.4pt][0pt]{ e^\kappa_a e^b_{\textcolor{red}{\gamma}}\Gamma_{\lambda \sigma}^{\textcolor{red}{\gamma}} \omega_{b \omega}^a}_{(\#b)}
-e^\kappa_a e^b_\lambda \omega_{c \omega}^a \omega_{b \sigma}^c\right)
+e^\kappa_a e^b_\lambda \omega_{b \omega,\sigma}^a
+\left(
\underbracket[0.4pt][0pt]{e_c^{\kappa} e^b_{\textcolor{red}{\eta}} \Gamma_{\lambda\omega}^{\textcolor{red}{\eta}} \omega_{b \sigma}^c}_{(\#a)}
\right)+
\underbracket[0.4pt][0pt]{e^\kappa_b e^b_{\lambda,\omega\sigma}}_{(\#c)}
\end{align}
\noindent Eq.\eqref{eq:Gamma_sw} $-$ Eq.\eqref{eq:Gamma_ws}:
\begin{align*}
\Gamma^\kappa_{\lambda\sigma,\omega}
-\Gamma^\kappa_{\lambda\omega,\sigma}
+\Gamma_{\eta \omega}^\kappa \Gamma_{\lambda\sigma}^\eta
-\Gamma_{\eta \sigma}^\kappa \Gamma_{\lambda\omega}^\eta
&=e^\kappa_a e^b_\lambda \left(
\omega_{b \sigma,\omega}^a
-\omega_{b \omega,\sigma}^a
+\omega_{c \omega}^a \omega_{b \sigma}^c
-\omega_{c \sigma}^a \omega_{b \omega}^c
\right)\\
R^\kappa_{\lambda\omega\sigma} &=
e^\kappa_a e^b_\lambda
\mathscr{R}^a_{b\omega\sigma}
\end{align*}
\noindent \textbf{Eq.\eqref{eq:action_G}}
\begin{align*}
R&=g^{\kappa\sigma}\delta^\omega_\varepsilon R^\varepsilon_{\kappa\omega\sigma}\\
&=\left( \eta^{de}e^\kappa_d e^\sigma_e \right) \delta^\omega_\varepsilon \left(e^\varepsilon_c e^a_\kappa \mathscr{R}^c_{a\omega\sigma} \right)\\
&=\eta^{ae} e^\sigma_e e^\omega_c \mathscr{R}^c_{a\omega\sigma}
\end{align*}
\begin{align*}
e_{,\gamma}=\left( \sqrt{-g} \right)_{,\gamma}
&= \sqrt{-g}\Gamma_{\eta\gamma}^{\eta}\\
&=e\, \left(e^\eta_a e^b_\eta \omega_{b\gamma}^{a}-e^b_\eta e^\eta_{b,\gamma} \right)
\end{align*}
\subsection{GR-EMT for GR}
\noindent \textbf{Eq.\eqref{eq:/omega,}}
\begin{align*}
\frac{\partial \mathscr{L}_{GR}}{\partial \omega^b_{c\mu,\gamma}} &= \frac{\partial}{\partial \omega^b_{c\mu,\gamma}} \left(\frac{1}{2\kappa} e\, \eta^{ae}e^\sigma_e e^\omega_f \mathscr{R}^f_{a\omega\sigma} \right) \\
&= \frac{1}{2\kappa} e\, \eta^{ae}e^\sigma_e e^\omega_f \frac{\partial}{\partial \omega^b_{c\mu,\gamma}}
\left( \omega ^f_{a\sigma,\omega}-\omega ^f_{a\omega,\sigma}
+\omega ^f_{d\omega}\omega ^d_{a\sigma}
-\omega ^f_{d\sigma}\omega ^d_{a\omega}
\right)\\
&= \frac{1}{2\kappa} e\, \eta^{ae}e^\sigma_e e^\omega_f
\left(\delta^f_b \delta^c_a \delta^\mu_\sigma \delta^\gamma_\omega - \delta^f_b \delta^c_a \delta^\mu_\omega \delta^\gamma_\sigma \right)\\
&= \frac{1}{2\kappa} e\, \eta^{ae} \delta^c_a
\left(e^\sigma_e e^\omega_f \delta^f_b \delta^\mu_\sigma \delta^\gamma_\omega - e^\sigma_e e^\omega_f \delta^f_b \delta^\mu_\omega \delta^\gamma_\sigma \right)\\
&= \frac{1}{2\kappa} e\, \eta^{ce}
\left(e^\mu_e e^\gamma_b - e^\gamma_e e^\mu_b \right)
\end{align*}
\noindent Similarly,
\begin{align*}
\frac{\partial \mathscr{L}_{GR}}{\partial \omega^b_{c\gamma,\mu}}&= \frac{1}{2\kappa} e\, \eta^{ce}
\left( e^\gamma_e e^\mu_b - e^\mu_e e^\gamma_b \right) =-\frac{\partial \mathscr{L}_{GR}}{\partial \omega^b_{c\mu,\gamma}}
\end{align*}
\noindent Since
\begin{align*}
\frac{\partial \mathscr{L}_{GR}}{\partial \Gamma_{\nu\mu,\gamma}^\alpha}
&=\frac{1}{2\kappa} \sqrt{-g} \left( g^{\nu\mu} \delta_\alpha^\gamma - g^{\nu\gamma} \delta_\alpha^\mu \right)\\
&=\frac{1}{2\kappa} e \left( \eta^{ce} e^\nu_c e^\mu_e \delta_\alpha^\gamma - \eta^{ce} e^\nu_c e^\gamma_e \delta_\alpha^\mu \right)\\
&=\frac{1}{2\kappa} e \eta^{ce} \left(e^\nu_c e^\mu_e e^\gamma_b e^b_\alpha - e^\nu_c e^\gamma_e e^\mu_b e^b_\alpha\right)\\
&=e^\nu_c e^b_\alpha \frac{1}{2\kappa} e \eta^{ce} \left(e^\mu_e e^\gamma_b - e^\gamma_e e^\mu_b \right)\\
&=e^\nu_c e^b_\alpha \frac{\partial \mathscr{L}_{GR}}{\partial \omega^b_{c\mu,\gamma}}
\end{align*}
\noindent Reversely,
\begin{align*}
\frac{\partial \mathscr{L}_{GR}}{\partial \omega^b_{c\mu,\gamma}}
&=e_\nu^c e_b^\alpha \frac{\partial \mathscr{L}_{GR}}{\partial \Gamma_{\nu\mu,\gamma}^\alpha}
\end{align*}
\noindent Evaluate $\frac{\partial \mathscr{L}_{GR}}{\partial \Gamma_{\mu\nu}^\alpha}$:
\begin{align*}
\frac{\partial \mathscr{L}_{GR}}{\partial \Gamma_{\mu\nu}^\alpha}
&=\frac{1}{2\kappa}\left( \sqrt{-g} \, g^{\kappa\sigma} \delta_\alpha^\nu \Gamma_{\kappa\sigma}^\mu +\sqrt{-g}\, g^{\mu\nu} \Gamma_{\alpha\omega}^\omega -\sqrt{-g}\, g^{\kappa\nu} \Gamma_{\kappa\alpha}^\mu -\sqrt{-g}\, g^{\mu\sigma} \Gamma_{\alpha\sigma}^\nu \right)
\end{align*}
\begin{align*}
\frac{\partial \mathscr{L}_{GR}}{\partial \Gamma_{\mu\nu,\gamma}^\alpha}
&=\frac{1}{2\kappa} \sqrt{-g} \left( g^{\mu\nu} \delta_\alpha^\gamma - g^{\mu\gamma} \delta_\alpha^\nu \right)
\end{align*}
\begin{adjustwidth}{-2.2cm}{-1cm}
\begin{align*}
\left(\frac{\partial \mathscr{L}_{GR}}{\partial \Gamma_{\nu\gamma,\mu}^\alpha} \right)_{,\mu}
&=\left(e^\nu_c e^b_\alpha \frac{\partial \mathscr{L}_{GR}}{\partial \omega^b_{c\gamma,\mu}}\right)_{,\mu}\\
&=e^\nu_c e^b_\alpha \left( \frac{\partial \mathscr{L}_{GR}}{\partial \omega^b_{c\gamma,\mu}}\right)_{,\mu}
+\left( e^\nu_{c,\mu}e^b_\alpha +e^\nu_c e^b_{\alpha,\mu} \right) \frac{\partial \mathscr{L}_{GR}}{\partial \omega^b_{c\gamma,\mu}}\\
&=e^\nu_c e^b_\alpha \frac{\partial \mathscr{L}_{GR}}{\partial \omega^b_{c\gamma}}
+\left( e^\nu_{c,\mu}e^b_\alpha +e^\nu_c e^b_{\alpha,\mu} \right) \frac{1}{2\kappa} e\, \eta^{ce}
\left( e^\gamma_e e^\mu_b - e^\mu_e e^\gamma_b \right)\\
&=e^\nu_c e^b_\alpha
\left\{
\frac{1}{2\kappa} e\,\eta^{ae} \left( e^{{\mu}}_e e^\gamma_b -e^\gamma_e e^{{\mu}}_b \right)\omega ^c_{a{{\mu}}}
-\frac{1}{2\kappa} e\,\eta^{ce}\left(e^{{\mu}}_e e^\gamma_f - e^\gamma_e e^{{\mu}}_f \right)\omega ^f_{b{{\mu}}}
\right\}
+\left( e^\nu_{c,\mu}e^b_\alpha +e^\nu_c e^b_{\alpha,\mu} \right) \frac{1}{2\kappa} e\, \eta^{ce}
\left( e^\gamma_e e^\mu_b - e^\mu_e e^\gamma_b \right)\\
&=\frac{1}{2\kappa} e
\left\{
e^\nu_c e^b_\alpha\eta^{ae} \left( e^{{\mu}}_e e^\gamma_b -e^\gamma_e e^{{\mu}}_b \right)\omega ^c_{a{{\mu}}}
-e^\nu_c e^b_\alpha\eta^{ce}\left(e^{{\mu}}_e e^\gamma_f - e^\gamma_e e^{{\mu}}_f \right)\omega ^f_{b{{\mu}}}
+\left( e^\nu_{c,\mu}e^b_\alpha +e^\nu_c e^b_{\alpha,\mu} \right) \eta^{ce}
\left( e^\gamma_e e^\mu_b - e^\mu_e e^\gamma_b \right)
\right\}\\
&=\frac{1}{2\kappa} e
\left\{
e^\nu_a e^b_\alpha\eta^{ce} \left( e^{{\mu}}_e e^\gamma_b -e^\gamma_e e^{{\mu}}_b \right)\omega ^a_{c{{\mu}}}
-e^\nu_c e^f_\alpha\eta^{ce}\left(e^{{\mu}}_e e^\gamma_b - e^\gamma_e e^{{\mu}}_b \right)\omega ^b_{f{{\mu}}}
-\left( e^\nu_{c,\mu}e^b_\alpha +e^\nu_c e^b_{\alpha,\mu} \right) \eta^{ce}
\left( e^\mu_e e^\gamma_b -e^\gamma_e e^\mu_b \right)
\right\}\\
&=\frac{1}{2\kappa} e \, \eta^{ce} \left( e^\mu_e e^\gamma_b -e^\gamma_e e^\mu_b \right)
\left\{
e^\nu_a e^b_\alpha \omega ^a_{c{{\mu}}}
-e^\nu_c e^f_\alpha\omega ^b_{f{{\mu}}}
-\left( e^\nu_{c,\mu}e^b_\alpha +e^\nu_c e^b_{\alpha,\mu} \right)
\right\}\\
&=\frac{1}{2\kappa} e \, \eta^{ce} \left( e^\mu_e e^\gamma_b -e^\gamma_e e^\mu_b \right)
\left\{
e^b_\alpha \left( e^\nu_a \omega ^a_{c\mu}-e^\nu_{c,\mu}\right)
-e^\nu_c\left( e^f_\alpha \omega^b_{f\mu} + e^b_{\alpha,\mu} \right)
\right\}\\
&=\frac{1}{2\kappa} e \, \eta^{ce} \left( e^\mu_e e^\gamma_b -e^\gamma_e e^\mu_b \right)
\left\{
e^b_\alpha e^\beta_c \Gamma^\nu_{\beta\mu}
-e^\nu_c e^b_\beta \Gamma^\beta_{\alpha\mu}
\right\}
=\frac{1}{2\kappa} e \, \eta^{ce}
\left\{
\left( e^\mu_e e^\gamma_b -e^\gamma_e e^\mu_b \right)e^b_\alpha e^\beta_c \Gamma^\nu_{\beta\mu}
-\left( e^\mu_e e^\gamma_b -e^\gamma_e e^\mu_b \right)e^\nu_c e^b_\beta \Gamma^\beta_{\alpha\mu}
\right\}\\
&=\frac{1}{2\kappa} e \, \eta^{ce}
\left\{
e^\mu_e e^\gamma_be^b_\alpha e^\beta_c \Gamma^\nu_{\beta\mu} -e^\gamma_e e^\mu_b e^b_\alpha e^\beta_c \Gamma^\nu_{\beta\mu}
-e^\mu_e e^\gamma_b e^\nu_c e^b_\beta \Gamma^\beta_{\alpha\mu}+e^\gamma_e e^\mu_b e^\nu_c e^b_\beta \Gamma^\beta_{\alpha\mu}
\right\}\\
&=\frac{1}{2\kappa} e \, \eta^{ce}
\left\{
e^\mu_e e^\beta_c \delta^\gamma_\alpha \Gamma^\nu_{\beta\mu}
-e^\gamma_e e^\beta_c \delta^\mu_\alpha \Gamma^\nu_{\beta\mu}
-e^\mu_e e^\nu_c \delta^\gamma_\beta \Gamma^\beta_{\alpha\mu}
+e^\gamma_e e^\nu_c \delta^\mu_\beta \Gamma^\beta_{\alpha\mu}
\right\}\\
&=\frac{1}{2\kappa} e \,
\left\{
g^{\mu\beta} \delta^\gamma_\alpha \Gamma^\nu_{\beta\mu}
-g^{\gamma\beta} \delta^\mu_\alpha \Gamma^\nu_{\beta\mu}
-g^{\mu\nu} \delta^\gamma_\beta \Gamma^\beta_{\alpha\mu}
+ g^{\gamma\nu} \delta^\mu_\beta \Gamma^\beta_{\alpha\mu}
\right\}
=\frac{1}{2\kappa} \sqrt{-g} \,
\left\{
g^{\mu\beta} \delta^\gamma_\alpha \Gamma^\nu_{\beta\mu}
+ g^{\gamma\nu} \Gamma^\mu_{\alpha\mu}
-g^{\gamma\beta} \Gamma^\nu_{\beta\alpha}
-g^{\mu\nu} \Gamma^\gamma_{\alpha\mu}
\right\}\\
&=\frac{\partial \mathscr{L}_{GR}}{\partial \Gamma_{\nu\gamma}^\alpha}
\end{align*}
\end{adjustwidth}
\begin{align*}
\Gamma_{\alpha \mu}^\beta&=e^\beta_b e^a_\alpha\omega_{a \mu}^b +e^\beta_b e^b_{\alpha,\mu}\\
&=e^\beta_b e^a_\alpha\omega_{a \mu}^b - e^a_{\alpha} e^\beta_{a,\mu}\\
\\
e^b_\beta \Gamma_{\alpha \mu}^\beta&= e^a_\alpha\omega_{a \mu}^b + e^b_{\alpha,\mu}\\
\\
e^\alpha_a \Gamma_{\alpha \mu}^\beta&=e^\beta_b \omega_{a \mu}^b - e^\beta_{a,\mu}
\end{align*}
\noindent \textbf{Eq.\eqref{eq:/omega}}
\begin{align*}
\frac{\partial \mathscr{L}_{GR}}{\partial \omega^b_{c\gamma}}
&= \frac{\partial}{\partial \omega^b_{c\gamma}} \left( \frac{1}{2\kappa} e\, \eta^{ae}e^\sigma_e e^\omega_f \mathscr{R}^f_{a\omega\sigma} \right)\\
&=\frac{1}{2\kappa} e\, \eta^{ae}e^\sigma_e e^\omega_f\, \frac{\partial}{\partial \omega^b_{c\gamma}} \left( \omega ^f_{a\sigma,\omega}-\omega ^f_{a\omega,\sigma}
+\omega ^f_{d\omega} \omega ^d_{a\sigma}
-\omega ^f_{d\sigma} \omega ^d_{a\omega}
\right)\\
&=\frac{1}{2\kappa} e\, \eta^{ae}e^\sigma_e e^\omega_f \left(
\delta^{f}_{b}\delta^{c}_{d}\delta^{\gamma}_{\omega}\omega ^d_{a\sigma}
+\omega ^f_{d\omega}\delta^{d}_{b}\delta^{c}_{a}\delta^{\gamma}_{\sigma}
-\delta^{f}_{b}\delta^{c}_{d}\delta^{\gamma}_{\sigma}\omega ^d_{a\omega}
-\omega ^f_{d\sigma}\delta^{d}_{b}\delta^{c}_{a}\delta^{\gamma}_{\omega}
\right)\\
&=\frac{1}{2\kappa} e\, \eta^{ae}e^\sigma_e e^\omega_f \left(
\delta^{f}_{b}\delta^{\gamma}_{\omega}\omega ^c_{a\sigma}
+\omega ^f_{b\omega}\delta^{c}_{a}\delta^{\gamma}_{\sigma}
-\delta^{f}_{b}\delta^{\gamma}_{\sigma}\omega ^c_{a\omega}
-\omega ^f_{b\sigma}\delta^{c}_{a}\delta^{\gamma}_{\omega}
\right)\\
&=\frac{1}{2\kappa} e\, \left(
\eta^{ae}e^\sigma_e e^\omega_f \delta^{f}_{b}\delta^{\gamma}_{\omega}\omega ^c_{a\sigma}
+\eta^{ae}e^\sigma_e e^\omega_f \omega ^f_{b\omega}\delta^{c}_{a}\delta^{\gamma}_{\sigma}
-\eta^{ae}e^\sigma_e e^\omega_f \delta^{f}_{b}\delta^{\gamma}_{\sigma}\omega ^c_{a\omega}
-\eta^{ae}e^\sigma_e e^\omega_f \omega ^f_{b\sigma}\delta^{c}_{a}\delta^{\gamma}_{\omega}
\right)\\
&=\frac{1}{2\kappa} e\, \left(
\eta^{ae}e^\sigma_e e^\gamma_b\omega ^c_{a\sigma}
+\eta^{ce}e^\gamma_e e^\omega_f \omega ^f_{b\omega}
-\eta^{ae}e^\gamma_e e^\omega_b \omega ^c_{a\omega}
-\eta^{ce}e^\sigma_e e^\gamma_f \omega ^f_{b\sigma}
\right)\\
&=
\frac{1}{2\kappa} e\,\eta^{ae} e^{\textcolor{red}{\mu}}_e e^\gamma_b\omega ^c_{a{\textcolor{red}{\mu}}}
+\frac{1}{2\kappa} e\,\eta^{ce}e^\gamma_e e^{\textcolor{red}{\mu}}_f \omega ^f_{b{\textcolor{red}{\mu}}}
-\frac{1}{2\kappa} e\,\eta^{ae}e^\gamma_e e^{\textcolor{red}{\mu}}_b \omega ^c_{a{\textcolor{red}{\mu}}}
-\frac{1}{2\kappa} e\,\eta^{ce}e^{\textcolor{red}{\mu}}_e e^\gamma_f \omega ^f_{b{\textcolor{red}{\mu}}}\\
&=
\frac{1}{2\kappa} e\,\eta^{ae} \left( e^{{\mu}}_e e^\gamma_b -e^\gamma_e e^{{\mu}}_b \right)\omega ^c_{a{{\mu}}}
-\frac{1}{2\kappa} e\,\eta^{ce}\left(e^{{\mu}}_e e^\gamma_f - e^\gamma_e e^{{\mu}}_f \right)\omega ^f_{b{{\mu}}}
\end{align*}
\noindent \textbf{Eq.\eqref{eq:/omega*/omega}}
\begin{align*}
\frac{\partial \mathscr{L}_{GR}}{\partial \omega^b_{c\gamma}}\omega^b_{c\varepsilon}
&=
\left[
\frac{1}{2\kappa} e\,\eta^{ae}
\left( e^{{\mu}}_e e^\gamma_b -e^\gamma_e e^{{\mu}}_b \right)
\omega ^c_{a{{\mu}}}
-\frac{1}{2\kappa} e\,\eta^{ce}
\left(e^{{\mu}}_e e^\gamma_f - e^\gamma_e e^{{\mu}}_f \right)
\omega ^f_{b{{\mu}}}
\right]\omega^b_{c\varepsilon}\\
&=
\frac{1}{2\kappa} e\,
\eta^{ae}
\left( e^{{\mu}}_e e^\gamma_b -e^\gamma_e e^{{\mu}}_b \right)
\omega^b_{c\varepsilon}\omega^c_{a\mu}
-\frac{1}{2\kappa} e\, \eta^{ce}
\left(e^{{\mu}}_e e^\gamma_f - e^\gamma_e e^{{\mu}}_f \right)
\omega^f_{b\mu}\omega^b_{c\varepsilon}\\
&=\frac{1}{2\kappa} e\,
\eta^{{\textcolor{red}{c}}e}\left({e^\mu_e e^\gamma_b-e^\gamma_e e^\mu_b} \right)\omega^b_{{\textcolor{red}{d}}\varepsilon}\omega^{\textcolor{red}{d}}_{{\textcolor{red}{c}}\mu}
-\frac{1}{2\kappa} e\, \eta^{ce} \left(e^\mu_e e^\gamma_{\textcolor{red}{b}} -e^\gamma_e e^\mu_{\textcolor{red}{b}} \right)\omega^{\textcolor{red}{b}}_{{\textcolor{red}{d}}\mu}\omega^{\textcolor{red}{d}}_{c\varepsilon}\\
&=\frac{1}{2\kappa} e\,
\eta^{ce}\left( e^\mu_e e^\gamma_b-e^\gamma_e e^\mu_b\right) \left( \omega^b_{{{d}}\varepsilon}\omega^{{d}}_{{{c}}\mu}-
\omega^{{b}}_{{{d}}\mu}\omega^{{d}}_{c\varepsilon}
\right)\\
&\underbrace{=}_{\eqref{eq:/omega,}}\frac{\partial \mathscr{L}_{GR}}{\partial \omega^b_{c\mu,\gamma}}
\left( \omega^b_{{{d}}\varepsilon}\omega^{{d}}_{{{c}}\mu}-
\omega^{{b}}_{{{d}}\mu}\omega^{{d}}_{c\varepsilon}
\right)
\end{align*}
\noindent \textbf{Eq.\eqref{eq:Noether_t}} \\
\begin{align*}
t^\gamma_\varepsilon&=\frac{\partial \mathscr{L}_{GR}}{\partial \omega^b_{c\mu,\gamma}}
\mathscr{R}^b_{c\varepsilon\mu}
- \delta^\gamma_\varepsilon \mathscr{L}_{GR}\\
&=\frac{1}{2\kappa} e\,\eta^{ce}\left(e^\mu_e e^\gamma_b -e^\gamma_e e^\mu_b \right)\mathscr{R}^b_{c\varepsilon\mu}-\delta^\gamma_\varepsilon \mathscr{L}_{GR}\\
&=\frac{1}{2\kappa} \sqrt{-g}\,\eta^{ce}\left(e^\mu_e e^\gamma_b -e^\gamma_e e^\mu_b\right)e^{b}_{\alpha}e^{\beta}_{c} R^\alpha_{\beta\varepsilon\mu}-\delta^\gamma_\varepsilon \mathscr{L}_{GR}\\
&=\frac{1}{2\kappa} \sqrt{-g}\,\eta^{ce}\left(e^\mu_e e^\gamma_b e^{b}_{\alpha}e^{\beta}_{c} -e^\gamma_e e^\mu_b e^{b}_{\alpha}e^{\beta}_{c} \right)R^\alpha_{\beta\varepsilon\mu}-\delta^\gamma_\varepsilon \mathscr{L}_{GR}\\
&=\frac{1}{2\kappa} \sqrt{-g}\,\eta^{ce}\left(
e^\mu_e \delta^\gamma_{\alpha} e^{\beta}_{c}
-e^\gamma_e \delta^\mu_{\alpha}e^{\beta}_{c} \right)R^\alpha_{\beta\varepsilon\mu}-\delta^\gamma_\varepsilon \mathscr{L}_{GR}\\
&=\frac{1}{2\kappa} \sqrt{-g}\,\left(
\eta^{ce}e^\mu_e e^{\beta}_{c} \delta^\gamma_{\alpha} R^\alpha_{\beta\varepsilon\mu}
-\eta^{ce}e^\gamma_e e^{\beta}_{c} \delta^\mu_{\alpha} R^\alpha_{\beta\varepsilon\mu}
\right)-\delta^\gamma_\varepsilon \mathscr{L}_{GR}\\
&=\frac{1}{2\kappa} \sqrt{-g}\,\left(
g^{\beta\mu} R^\gamma_{\beta\varepsilon\mu}
- g^{\beta\gamma}\delta^\mu_{\alpha} R^\alpha_{\beta{\varepsilon\mu}}
\right)-\delta^\gamma_\varepsilon \frac{1}{2\kappa} \sqrt{-g}\, R\\
&=\frac{1}{2\kappa} \sqrt{-g}\,\left(
g^{\beta\mu} R^\gamma_{\beta\varepsilon\mu}
\textcolor{red}{+} g^{\beta\gamma}\delta^\mu_{\alpha} R^\alpha_{\beta\textcolor{red}{\mu\varepsilon}}
\right)-\delta^\gamma_\varepsilon \frac{1}{2\kappa} \sqrt{-g}\, R\\
&=\left(g^{\beta\mu}R^\gamma_{\beta\varepsilon\mu}+g^{\beta\gamma}R_{\beta\varepsilon}-\delta^\gamma_\varepsilon R \right)\frac{1}{2\kappa} \sqrt{-g}
\end{align*}
\begin{align*}
g^{\beta\mu} R^\gamma_{\beta\varepsilon\mu}
- g^{\beta\gamma}\delta^\mu_{\alpha} R^\alpha_{\beta{\varepsilon\mu}}
&=g^{\beta\mu}\delta^\gamma_{\alpha} R^\alpha_{\beta\varepsilon\mu}
- g^{\beta\gamma}\delta^\mu_{\alpha} R^\alpha_{\beta{\varepsilon\mu}}\\
\\
\\
\\
g^{\beta\mu}\delta^\gamma_{\alpha} - g^{\beta\gamma}\delta^\mu_{\alpha} =\eta^{ce}e^\beta_c e^\gamma_e-\eta^{ce}\\
\end{align*}
\noindent \textbf{Eq.\eqref{eq:t_gravity}} \\
\noindent If metric compatible, the following is valid:
\begin{align*}
g_{\alpha\gamma}R^\gamma_{\beta\varepsilon\mu}=R_{\alpha\beta\varepsilon\mu}=-R_{\beta\alpha\varepsilon\mu}=-R_{\alpha\beta\mu\varepsilon}=R_{\varepsilon\mu\alpha\beta}
\end{align*}
\begin{align*}
\left(g^{\beta\mu}R^\gamma_{\beta\varepsilon\mu}+g^{\beta\gamma}R_{\beta\varepsilon}-\delta^\gamma_\varepsilon R \right)\frac{1}{2\kappa} \sqrt{-g}
&=\left(g^{\beta\mu}g^{\gamma\alpha}R_{\alpha\beta\varepsilon\mu}+g^{\beta\gamma}R_{\beta\varepsilon}-\delta^\gamma_\varepsilon R \right)\frac{1}{2\kappa} \sqrt{-g}\\
&=\left(g^{\beta\mu}g^{\gamma\alpha}R_{\textcolor{red}{\beta\alpha}\textcolor{orange}{\mu\varepsilon}}+g^{\beta\gamma}R_{\beta\varepsilon}-\delta^\gamma_\varepsilon R \right)\frac{1}{2\kappa} \sqrt{-g}\\
&=\left(g^{\gamma\alpha}R^\mu_{{\alpha}{\mu\varepsilon}}+g^{\beta\gamma}R_{\beta\varepsilon}-\delta^\gamma_\varepsilon R \right)\frac{1}{2\kappa} \sqrt{-g}\\
&=\left(g^{\gamma\alpha}R_{{\alpha}{\varepsilon}}+g^{\beta\gamma}R_{\beta\varepsilon}-\delta^\gamma_\varepsilon R \right)\frac{1}{2\kappa} \sqrt{-g}\\
&=\left(2g^{\beta\gamma}R_{\beta\varepsilon}-\delta^\gamma_\varepsilon R \right)\frac{1}{2\kappa} \sqrt{-g}\\
&=\left(g^{\beta\gamma}R_{\beta\varepsilon}-\frac{1}{2}\delta^\gamma_\varepsilon R \right)\frac{1}{\kappa} \sqrt{-g}\\
\end{align*}
\begin{align*}
t_{\alpha\varepsilon}&=\left(g_{\alpha\gamma}g^{\beta\mu}R^\gamma_{\beta\varepsilon\mu}
+R_{\alpha\varepsilon}
-g_{\alpha\varepsilon} R \right)\frac{1}{2\kappa} \sqrt{-g}\\
&=\left(g^{\beta\mu}R_{\alpha\beta\varepsilon\mu}
+R_{\alpha\varepsilon}
-g_{\alpha\varepsilon} R \right)\frac{1}{2\kappa} \sqrt{-g}\\
&=\left(g^{\beta\mu}R_{\textcolor{red}{\beta\alpha}\textcolor{blue}{\mu\varepsilon}}
+R_{\alpha\varepsilon}
-g_{\alpha\varepsilon} R \right)\frac{1}{2\kappa} \sqrt{-g}\\
&=\left(R^\mu_{{\alpha}{\mu\varepsilon}}
+R_{\alpha\varepsilon}
-g_{\alpha\varepsilon} R \right)\frac{1}{2\kappa} \sqrt{-g}\\
&=\left(R_{{\alpha}{\varepsilon}}
+R_{\alpha\varepsilon}
-g_{\alpha\varepsilon} R \right)\frac{1}{2\kappa} \sqrt{-g}\\
&=\left(2R_{{\alpha}{\varepsilon}}
-g_{\alpha\varepsilon} R \right)\frac{1}{2\kappa} \sqrt{-g}\\
&=\frac{1}{\kappa} \mathbb{G}_{{\alpha}{\varepsilon}}\sqrt{-g}
\end{align*}
Originally written in Chinese by the author, these articles are translated into English to invite cross-language resonance.