ไธ€่ˆฌๆ•™็ง‘ๆ›ธไธŠๅฎˆๆ†้‡็š„ๆŽจๅฐŽ

ๅ‹•้‡ๅฎˆๆ†

ๅฐๆ–ผๅ‹•้‡ๅฎˆๆ†๏ผŒๆˆ‘ๅ€‘ๅฏไปฅ็›ดๆŽฅๅพž EoM ๅ‡บ็™ผ๏ผš \[ \frac{\partial L}{\partial q} - \frac{d}{dt} \frac{\partial L}{\partial \dot{q}} = 0 \implies \frac{d}{dt} \frac{\partial L}{\partial \dot{q}} = \frac{\partial L}{\partial q}ใ€‚ \] ๅฆ‚ๆžœ \(L\) ไธๆ˜ฏ่ปŒ่ทก \(q\) ็š„้กฏๅ‡ฝๆ•ธ๏ผŒๅ‰‡ \(\frac{\partial L}{\partial q} = 0\)๏ผŒๅพž่€Œ๏ผš \[ \frac{d}{dt} \frac{\partial L}{\partial \dot{q}} = 0 \] ้€™ๆ„ๅ‘ณ่‘—ๅ‹•้‡๏ผš \[ p = \frac{\partial L}{\partial \dot{q}} = constant \] \(\frac{\partial L}{\partial q} = 0\) ็š„ๅฆไธ€ๅ€‹ๅซ็พฉๆ˜ฏ๏ผŒ็•ถ \(q \to q + \delta q\)๏ผˆไฝ†ไธๆ”น่ฎŠ \(\dot{q}\) ๆ™‚๏ผ‰๏ผŒๆœ‰๏ผš \[ \delta L = \frac{\partial L}{\partial q} \delta q = 0 \]

่ƒฝ้‡ๅฎˆๆ†่ˆ‡ Hamiltonian

ๅ†ไพ†๏ผŒๆˆ‘ๅ€‘่จŽ่ซ– Hamiltonian \(H\)๏ผš \[ \frac{dL}{dt} = \frac{\partial L}{\partial \dot{q}} \frac{d\dot{q}}{dt} + \frac{\partial L}{\partial q} \frac{dq}{dt} + \frac{\partial L}{\partial t} \] ็งป้ …ไธฆๆ•ด็†ๅพŒ๏ผŒๅฏไปฅๅพ—ๅˆฐ๏ผš \[ \frac{\partial L}{\partial t} = \frac{dL}{dt} - \frac{\partial L}{\partial \dot{q}} \frac{d\dot{q}}{dt} - \frac{\partial L}{\partial q} \dot{q} \] \[ = \frac{dL}{dt} - \frac{d}{dt} \left( \frac{\partial L}{\partial \dot{q}} \dot{q} \right) + \frac{d}{dt} \left( \frac{\partial L}{\partial \dot{q}} \right) \dot{q} - \frac{\partial L}{\partial q} \dot{q} \] \[ = -\frac{d}{dt} \left( \frac{\partial L}{\partial \dot{q}} \dot{q} - L \right) + \left( \frac{d}{dt} \frac{\partial L}{\partial \dot{q}} - \frac{\partial L}{\partial q} \right) \dot{q} \] ็ฌฌไบŒ้ …ๅณๆ˜ฏ \(EoM = 0\)๏ผŒๆ‰€ไปฅ๏ผš \[ \frac{\partial L}{\partial t} = -\frac{d}{dt} \left( \frac{\partial L}{\partial \dot{q}} \dot{q} - L \right) \] ๅฆ‚ๆžœ \(L\) ไธๆ˜ฏๆ™‚้–“ \(t\) ็š„้กฏๅ‡ฝๆ•ธ๏ผŒๅ‰‡ \(\frac{\partial L}{\partial t} = 0\)๏ผŒๅพž่€Œ๏ผš \[ \frac{d}{dt} \left( \frac{\partial L}{\partial \dot{q}} \dot{q} - L \right) = 0 \] ่ƒฝ้‡๏ผš \[ E = \frac{\partial L}{\partial \dot{q}} \dot{q} - L = constant \] \(\frac{\partial L}{\partial t} = 0\) ็š„ๅฆไธ€ๅ€‹ๅซ็พฉๆ˜ฏ๏ผŒ็•ถ \(t \to t + \delta t\)๏ผˆไฝ†ไธๆ”น่ฎŠ \(q, \dot{q}\) ๆ™‚๏ผ‰๏ผŒๆœ‰๏ผš \[ \delta L = \frac{\partial L}{\partial t} \delta t = 0 \]

ๅ…จๅŸŸ่ˆ‡ๅฑ€ๅŸŸ่ฎŠๆ›

ๅœจๅ‰ไธ€็ฏ€ไธญ๏ผŒๆˆ‘ๅ€‘่จŽ่ซ–ไบ†ไฝœ็”จ้‡ \(S\) ็š„ๅฐ็จฑๆ€ง๏ผŒๅณ \(\delta S = 0\)ใ€‚่€Œๅœจ้€™ไธ€็ฏ€ไธญ๏ผŒๆˆ‘ๅ€‘่จŽ่ซ–็š„ๆ˜ฏ \(L\) ไธ็‚บๆ–ผ \(q\) ๆˆ– \(t\)็š„้กฏๅ‡ฝๆ•ธ๏ผŒๅณ \(\delta L = 0\)ใ€‚ๅ…ฉ่€…็š„ๅทฎๅˆฅ้ซ”็พๅœจ๏ผš \[ \delta S = \delta \left( \int L \, dt \right) = \int \delta L \, dt + \int L \delta dt๏ผŒ \] ็ฌฌไบŒ้ …็”ข็”Ÿไบ†ๅทฎ็•ฐใ€‚็”ฑไน‹ๅ‰็š„ๆŽจๅฐŽ๏ผš \[ \int L \delta dt = \int L \frac{d \delta t}{dt} dt \] ่‹ฅ \(\frac{d \delta t}{dt} = 0\)๏ผŒๅ‰‡ \(\delta L = 0 \iff \delta S = 0\) ๆ›ดไป”็ดฐๅœฐๆฏ”่ผƒๅฆ‚ไธ‹่กจ๏ผš

\[\delta L = 0\] \[\delta S = 0\]
\[\frac{\partial L}{\partial q} = \frac{d}{dt} \frac{\partial L}{\partial \dot{q}} = 0\] \[\frac{d}{dt} \left( \frac{\partial L}{\partial \dot{q}} \Delta q \right) = 0\]
\[ \frac{\partial L}{\partial t} = -\frac{d}{dt} \left( \frac{\partial L}{\partial \dot{q}} \dot{q} - L \right)=0 \] \[\frac{d}{dt} \left[ \left( \frac{\partial L}{\partial \dot{q}} \dot{q} - L \right) \delta t \right] = 0\]

็•ถ \(\Delta q\) ็š„่ฎŠๅˆ†ไธๆ˜ฏๆ™‚้–“็š„ๅ‡ฝๆ•ธ๏ผˆๅณ \(\frac{d}{dt} \Delta q = 0\)๏ผ‰๏ผŒๅ‰‡ \(\delta L = 0\) ่ˆ‡ \(\delta S = 0\) ็š„็ตๆžœ็›ธๅŒใ€‚ๅŒๆจฃ๏ผŒ็•ถ \(\frac{d}{dt} \delta t = 0\) ๆ™‚๏ผŒๅ…ฉ่€…็š„ๅฎˆๆ†้‡็›ธ็ญ‰ใ€‚

้€™ๅผ•ๅ…ฅไบ†ๅ…จๅŸŸ่ฎŠๆ›๏ผˆGlobal Transformation๏ผ‰่ˆ‡ๅฑ€ๅŸŸ่ฎŠๆ›๏ผˆLocal Transformation๏ผ‰็š„ๆฆ‚ๅฟตใ€‚ๅ…จๅŸŸ่ฎŠๆ›ๆ˜ฏๆŒ‡่ฎŠๅˆ†้‡่ˆ‡ๆ™‚้–“็„ก้—œ๏ผŒๅณๅ„ๆ™‚้–“้ปžไธŠ็š„่ฎŠๅŒ–้‡ๅ›บๅฎšใ€‚ๅฑ€ๅŸŸ่ฎŠๆ›ๅ‰‡ๅ…่จฑ่ฎŠๅˆ†้‡ๆ˜ฏๆ™‚้–“็š„ๅ‡ฝๆ•ธ๏ผŒ่กจ็คบๅ„ๆ™‚้–“้ปžไธŠ็š„่ฎŠๅŒ–้‡ๆœ‰ๆ›ด้ซ˜่‡ช็”ฑๅบฆใ€‚้กฏ็„ถ๏ผŒๅ…จๅŸŸ่ฎŠๆ›ๆ˜ฏๅฑ€ๅŸŸ่ฎŠๆ›็š„ไธ€ๅ€‹็‰นไพ‹ใ€‚่จŽ่ซ– \(\delta L = 0\) ่ƒฝ่ฟ…้€Ÿๅพ—ๅˆฐๅ…จๅŸŸ่ฎŠๆ›็š„ๅฎˆๆ†้‡๏ผŒ่€Œๅฑ€ๅŸŸ่ฎŠๆ›ๅ‰‡ๆœƒๅผ•ๅ‡บๆ–ฐ็š„ๆ–นๅ‘๏ผŒไพ‹ๅฆ‚่ฆ็ฏ„็†่ซ–๏ผˆGauge Theory๏ผ‰๏ผŒๆœชไพ†ๆœƒๆœ‰ๆฉŸๆœƒๆ’ฐๆ–‡่จŽ่ซ–ใ€‚