ไธ่ฌๆ็งๆธไธๅฎๆ้็ๆจๅฐ
ๅ้ๅฎๆ
ๅฐๆผๅ้ๅฎๆ๏ผๆๅๅฏไปฅ็ดๆฅๅพ EoM ๅบ็ผ๏ผ \[ \frac{\partial L}{\partial q} - \frac{d}{dt} \frac{\partial L}{\partial \dot{q}} = 0 \implies \frac{d}{dt} \frac{\partial L}{\partial \dot{q}} = \frac{\partial L}{\partial q}ใ \] ๅฆๆ \(L\) ไธๆฏ่ป่ทก \(q\) ็้กฏๅฝๆธ๏ผๅ \(\frac{\partial L}{\partial q} = 0\)๏ผๅพ่๏ผ \[ \frac{d}{dt} \frac{\partial L}{\partial \dot{q}} = 0 \] ้ๆๅณ่ๅ้๏ผ \[ p = \frac{\partial L}{\partial \dot{q}} = constant \] \(\frac{\partial L}{\partial q} = 0\) ็ๅฆไธๅๅซ็พฉๆฏ๏ผ็ถ \(q \to q + \delta q\)๏ผไฝไธๆน่ฎ \(\dot{q}\) ๆ๏ผ๏ผๆ๏ผ \[ \delta L = \frac{\partial L}{\partial q} \delta q = 0 \]
่ฝ้ๅฎๆ่ Hamiltonian
ๅไพ๏ผๆๅ่จ่ซ Hamiltonian \(H\)๏ผ \[ \frac{dL}{dt} = \frac{\partial L}{\partial \dot{q}} \frac{d\dot{q}}{dt} + \frac{\partial L}{\partial q} \frac{dq}{dt} + \frac{\partial L}{\partial t} \] ็งป้ ไธฆๆด็ๅพ๏ผๅฏไปฅๅพๅฐ๏ผ \[ \frac{\partial L}{\partial t} = \frac{dL}{dt} - \frac{\partial L}{\partial \dot{q}} \frac{d\dot{q}}{dt} - \frac{\partial L}{\partial q} \dot{q} \] \[ = \frac{dL}{dt} - \frac{d}{dt} \left( \frac{\partial L}{\partial \dot{q}} \dot{q} \right) + \frac{d}{dt} \left( \frac{\partial L}{\partial \dot{q}} \right) \dot{q} - \frac{\partial L}{\partial q} \dot{q} \] \[ = -\frac{d}{dt} \left( \frac{\partial L}{\partial \dot{q}} \dot{q} - L \right) + \left( \frac{d}{dt} \frac{\partial L}{\partial \dot{q}} - \frac{\partial L}{\partial q} \right) \dot{q} \] ็ฌฌไบ้ ๅณๆฏ \(EoM = 0\)๏ผๆไปฅ๏ผ \[ \frac{\partial L}{\partial t} = -\frac{d}{dt} \left( \frac{\partial L}{\partial \dot{q}} \dot{q} - L \right) \] ๅฆๆ \(L\) ไธๆฏๆ้ \(t\) ็้กฏๅฝๆธ๏ผๅ \(\frac{\partial L}{\partial t} = 0\)๏ผๅพ่๏ผ \[ \frac{d}{dt} \left( \frac{\partial L}{\partial \dot{q}} \dot{q} - L \right) = 0 \] ่ฝ้๏ผ \[ E = \frac{\partial L}{\partial \dot{q}} \dot{q} - L = constant \] \(\frac{\partial L}{\partial t} = 0\) ็ๅฆไธๅๅซ็พฉๆฏ๏ผ็ถ \(t \to t + \delta t\)๏ผไฝไธๆน่ฎ \(q, \dot{q}\) ๆ๏ผ๏ผๆ๏ผ \[ \delta L = \frac{\partial L}{\partial t} \delta t = 0 \]
ๅ จๅ่ๅฑๅ่ฎๆ
ๅจๅไธ็ฏไธญ๏ผๆๅ่จ่ซไบไฝ็จ้ \(S\) ็ๅฐ็จฑๆง๏ผๅณ \(\delta S = 0\)ใ่ๅจ้ไธ็ฏไธญ๏ผๆๅ่จ่ซ็ๆฏ \(L\) ไธ็บๆผ \(q\) ๆ \(t\)็้กฏๅฝๆธ๏ผๅณ \(\delta L = 0\)ใๅ ฉ่ ็ๅทฎๅฅ้ซ็พๅจ๏ผ \[ \delta S = \delta \left( \int L \, dt \right) = \int \delta L \, dt + \int L \delta dt๏ผ \] ็ฌฌไบ้ ็ข็ไบๅทฎ็ฐใ็ฑไนๅ็ๆจๅฐ๏ผ \[ \int L \delta dt = \int L \frac{d \delta t}{dt} dt \] ่ฅ \(\frac{d \delta t}{dt} = 0\)๏ผๅ \(\delta L = 0 \iff \delta S = 0\) ๆดไป็ดฐๅฐๆฏ่ผๅฆไธ่กจ๏ผ
\[\delta L = 0\] | \[\delta S = 0\] |
\[\frac{\partial L}{\partial q} = \frac{d}{dt} \frac{\partial L}{\partial \dot{q}} = 0\] | \[\frac{d}{dt} \left( \frac{\partial L}{\partial \dot{q}} \Delta q \right) = 0\] |
\[ \frac{\partial L}{\partial t} = -\frac{d}{dt} \left( \frac{\partial L}{\partial \dot{q}} \dot{q} - L \right)=0 \] | \[\frac{d}{dt} \left[ \left( \frac{\partial L}{\partial \dot{q}} \dot{q} - L \right) \delta t \right] = 0\] |
็ถ \(\Delta q\) ็่ฎๅไธๆฏๆ้็ๅฝๆธ๏ผๅณ \(\frac{d}{dt} \Delta q = 0\)๏ผ๏ผๅ \(\delta L = 0\) ่ \(\delta S = 0\) ็็ตๆ็ธๅใๅๆจฃ๏ผ็ถ \(\frac{d}{dt} \delta t = 0\) ๆ๏ผๅ
ฉ่
็ๅฎๆ้็ธ็ญใ
้ๅผๅ
ฅไบๅ
จๅ่ฎๆ๏ผGlobal Transformation๏ผ่ๅฑๅ่ฎๆ๏ผLocal Transformation๏ผ็ๆฆๅฟตใๅ
จๅ่ฎๆๆฏๆ่ฎๅ้่ๆ้็ก้๏ผๅณๅๆ้้ปไธ็่ฎๅ้ๅบๅฎใๅฑๅ่ฎๆๅๅ
่จฑ่ฎๅ้ๆฏๆ้็ๅฝๆธ๏ผ่กจ็คบๅๆ้้ปไธ็่ฎๅ้ๆๆด้ซ่ช็ฑๅบฆใ้กฏ็ถ๏ผๅ
จๅ่ฎๆๆฏๅฑๅ่ฎๆ็ไธๅ็นไพใ่จ่ซ \(\delta L = 0\) ่ฝ่ฟ
้ๅพๅฐๅ
จๅ่ฎๆ็ๅฎๆ้๏ผ่ๅฑๅ่ฎๆๅๆๅผๅบๆฐ็ๆนๅ๏ผไพๅฆ่ฆ็ฏ็่ซ๏ผGauge Theory๏ผ๏ผๆชไพๆๆๆฉๆๆฐๆ่จ่ซใ