一般教科書上守恆量的推導
動量守恆
對於動量守恆,我們可以直接從 EoM 出發: \[ \frac{\partial L}{\partial q} - \frac{d}{dt} \frac{\partial L}{\partial \dot{q}} = 0 \implies \frac{d}{dt} \frac{\partial L}{\partial \dot{q}} = \frac{\partial L}{\partial q}。 \] 如果 \(L\) 不是軌跡 \(q\) 的顯函數,則 \(\frac{\partial L}{\partial q} = 0\),從而: \[ \frac{d}{dt} \frac{\partial L}{\partial \dot{q}} = 0 \] 這意味著動量: \[ p = \frac{\partial L}{\partial \dot{q}} = constant \] \(\frac{\partial L}{\partial q} = 0\) 的另一個含義是,當 \(q \to q + \delta q\)(但不改變 \(\dot{q}\) 時),有: \[ \delta L = \frac{\partial L}{\partial q} \delta q = 0 \]
能量守恆與 Hamiltonian
再來,我們討論 Hamiltonian \(H\): \[ \frac{dL}{dt} = \frac{\partial L}{\partial \dot{q}} \frac{d\dot{q}}{dt} + \frac{\partial L}{\partial q} \frac{dq}{dt} + \frac{\partial L}{\partial t} \] 移項並整理後,可以得到: \[ \frac{\partial L}{\partial t} = \frac{dL}{dt} - \frac{\partial L}{\partial \dot{q}} \frac{d\dot{q}}{dt} - \frac{\partial L}{\partial q} \dot{q} \] \[ = \frac{dL}{dt} - \frac{d}{dt} \left( \frac{\partial L}{\partial \dot{q}} \dot{q} \right) + \frac{d}{dt} \left( \frac{\partial L}{\partial \dot{q}} \right) \dot{q} - \frac{\partial L}{\partial q} \dot{q} \] \[ = -\frac{d}{dt} \left( \frac{\partial L}{\partial \dot{q}} \dot{q} - L \right) + \left( \frac{d}{dt} \frac{\partial L}{\partial \dot{q}} - \frac{\partial L}{\partial q} \right) \dot{q} \] 第二項即是 \(EoM = 0\),所以: \[ \frac{\partial L}{\partial t} = -\frac{d}{dt} \left( \frac{\partial L}{\partial \dot{q}} \dot{q} - L \right) \] 如果 \(L\) 不是時間 \(t\) 的顯函數,則 \(\frac{\partial L}{\partial t} = 0\),從而: \[ \frac{d}{dt} \left( \frac{\partial L}{\partial \dot{q}} \dot{q} - L \right) = 0 \] 能量: \[ E = \frac{\partial L}{\partial \dot{q}} \dot{q} - L = constant \] \(\frac{\partial L}{\partial t} = 0\) 的另一個含義是,當 \(t \to t + \delta t\)(但不改變 \(q, \dot{q}\) 時),有: \[ \delta L = \frac{\partial L}{\partial t} \delta t = 0 \]
全域與局域變換
在前一節中,我們討論了作用量 \(S\) 的對稱性,即 \(\delta S = 0\)。而在這一節中,我們討論的是 \(L\) 不為於 \(q\) 或 \(t\)的顯函數,即 \(\delta L = 0\)。兩者的差別體現在: \[ \delta S = \delta \left( \int L \, dt \right) = \int \delta L \, dt + \int L \delta dt, \] 第二項產生了差異。由之前的推導: \[ \int L \delta dt = \int L \frac{d \delta t}{dt} dt \] 若 \(\frac{d \delta t}{dt} = 0\),則 \(\delta L = 0 \iff \delta S = 0\) 更仔細地比較如下表:
| \[\delta L = 0\] | \[\delta S = 0\] |
| \[\frac{\partial L}{\partial q} = \frac{d}{dt} \frac{\partial L}{\partial \dot{q}} = 0\] | \[\frac{d}{dt} \left( \frac{\partial L}{\partial \dot{q}} \Delta q \right) = 0\] |
| \[ \frac{\partial L}{\partial t} = -\frac{d}{dt} \left( \frac{\partial L}{\partial \dot{q}} \dot{q} - L \right)=0 \] | \[\frac{d}{dt} \left[ \left( \frac{\partial L}{\partial \dot{q}} \dot{q} - L \right) \delta t \right] = 0\] |
當 \(\Delta q\) 的變分不是時間的函數(即 \(\frac{d}{dt} \Delta q = 0\)),則 \(\delta L = 0\) 與 \(\delta S = 0\) 的結果相同。同樣,當 \(\frac{d}{dt} \delta t = 0\) 時,兩者的守恆量相等。
這引入了全域變換(Global Transformation)與局域變換(Local Transformation)的概念。全域變換是指變分量與時間無關,即各時間點上的變化量固定。局域變換則允許變分量是時間的函數,表示各時間點上的變化量有更高自由度。顯然,全域變換是局域變換的一個特例。討論 \(\delta L = 0\) 能迅速得到全域變換的守恆量,而局域變換則會引出新的方向,例如規範理論(Gauge Theory),未來會有機會撰文討論。