็ฐกๅ่ฎๅ่กจ็คบๆณ
ๅไธ้จๅไป็ดนไบ็ฐกๅฎ็่ฎๅๆณๆฆๅฟต๏ผไฝๆฏ้่ฆๅผๅ ฅไปปๆ็ๅฝๆธ\(\eta (t)\)๏ผๆๆณไธ็จๅซ็ ฉ็ฃ๏ผไธๅฉๆผๅพ็บๆไฝใ็ฌฌไบ้จๅไปฅ็ธๅ็ๆฆๅฟต๏ผๆก็จๆฏ่ผๆฝ่ฑก็ๆณๆณไฝ็ธๅ็ๆธๅญธๆๆณ๏ผๆผ็คบไธๆฌก่ฎๅๆณ็ๆไฝใๆ้ปๅๅฐ่ฎๅ็ๆไฝ้กๅๆผๅพฎๅๆไฝใ
![]() | ![]() |
้ๅฐๅไธ็จฎๆณๅฝ๏ผFunctional๏ผ็็ฉๅๅ้ก $$S[F(x,\dot{x},t)]=\int_a^b F(x,\dot{x},t)dt $$ ็ถๆๅ้ๅฐ\(x\)ๅ่ฎๅ๏ผ $$xโx+\delta x$$ ่ฎๅ\(\delta x\)ๆปฟ่ถณ $$\delta x(a)=\delta x(b)=0$$ \(x\)็่ฎๅๆๅฐ่ด\(\dot{x}\)ใ\(F\)็ผ็่ฎๅ $$ \dot{x} (x) \to \dot{x} (x+\delta x) =\dot{x}(x)+\delta \dot{x}$$ $$F(x,\dot{x},t)โF(x+\delta x,\dot{x}(x)+\delta \dot{x},t)=F(x,\dot{x},t)+\delta F $$ ๆๅ่ฆ\(\delta S=0\) $$\delta S=\delta \int _a^b Fdt=\int _a^b \delta Fdt=0$$ ๆฆๅฟตไธๅพๅฅฝ็่งฃ็ๆฏ๏ผ\(\delta F\)็่ฎๅๅ\(\delta x\)ใ\(\delta \dot{x}\)ๆ้๏ผๆไปฅๅฐ\(\delta F\)ๅฑ้ $$\delta S=\int _a^b \delta Fdt=\int _a^b { \partial F\over\partial x }\delta x+{\partial F\over \partial \dot{x} } \delta \dot{x} dt $$
้ฒ้๏ผThm.1 :ๅพฎๅ่่ฎๅๅฐ่ชฟ |
ๅฐ\(\delta \dot{x}\)ๅฐ่ชฟ \({d \over dt} \delta x\)
$$\delta S=\int _a^b {\partial F\over\partial x} \delta xdt+ \int _a^b {\partial F\over \partial \dot{x} } \left( {d \over dt} \delta x\right)dt $$
ๅๆจฃ็ๆๆณๅฐ็ฌฌไบ้
ๅๅ้จ็ฉๅ
$$\int _a^b {\partial F\over \partial \dot{x} } \left( {d \over dt} \delta x\right)dt = \color{red}{{\partial F\over \partial \dot{x} } \delta x \Big|_a^b}-\int _a^b {d \over dt} {\partial F\over \partial \dot{x} } \delta xdt$$
ๆณจๆ็ด
่ฒ้ไธ้
๏ผๅ ็บๆๅ่ฆๆฑ่ฎๅ\(\delta x\)ๆปฟ่ถณ\(\delta x(a)=\delta x(b)=0\)๏ผๆไปฅ\( \color{red}{{\partial F\over \partial \dot{x} } \delta x\Big|_a^b=0}\)
$$\delta S=\int _a^b {\partial F\over\partial x} \delta xdt-\int _a^b \left( {d \over dt} {\partial F\over \partial \dot{x} } \right)\delta xdt $$
$$=\int _a^b \left( {\partial F\over\partial x}- {d \over dt} {\partial F\over \partial \dot{x} } \right)\delta xdt=0$$
\(\delta x \) is arbitrary.
$$ {\partial F\over\partial x}- {d \over dt} {\partial F\over \partial \dot{x} } =0$$
Euler-Lagrange equation
้ฒ้๏ผThm.2:่ฎๅ็Chain rule $$\delta (FG)={\partial (FG)\over\partial x} \delta x+{\partial (FG)\over \partial \dot{x} } \delta \dot{x}$$ $$=\left( {\partial F\over\partial x} G+F {\partial G\over\partial x}\right)\delta x+\left( {\partial F\over \partial \dot{x} } G+F {\partial G\over\partial \dot{x}} \right)\delta \dot{x}$$ $$=\left( {\partial F\over\partial x} \delta x+ {\partial F\over \partial \dot{x} } \delta \dot{x} \right)G+F\left({\partial G\over\partial x} \delta x+{\partial G\over\partial \dot{x}} \delta \dot{x} \right)$$ $$= \delta F\cdot G+F\cdot \delta G$$ |
้ฒ้๏ผThm.3:้ๅฐๅฝๆธFๅไนๅ้คๅฆไธๅฝๆธG๏ผไธๅฝฑ้ฟ่ฎๅ $$\delta F=\delta \left(F\cdot {G\over G}\right)=\delta \left(F\cdot G\cdot G^{-1} \right)$$ $$=\delta F\cdot G\cdot G^{-1}+F\cdot \delta G\cdot G^{-1}+F\cdot G\cdot \delta (G^{-1} )$$ $$=\delta F+F\cdot \delta G\cdot G^{-1}+F\cdot G\cdot \left(-{\delta G\over G^2} \right)$$ $$=\delta F$$ |