ๅคๅ ธ่ซพ็นๅฎ็
่ซพ็นๅฎ็ไฝ็บๅคๅ
ธๅๅญธ้่ฆ็ๅฎ็๏ผไนๆฏLagrangianใHamiltonian่ถ
่ถ็้ ๅๅญธ็้่ฆๅๅ ใ่ซพ็นๅฎ็็่กจ่ฟฐ็บ๏ผ็ถ็ณป็ตฑๆปฟ่ถณEoMใๆๆๅฐไฝ็จ้ๅ็ไนไธ๏ผๆๅ่ฅ็ตฆไบAction Sไธๅ่ฎๅ\(\delta \alpha\)ๅปๅฏไปฅไฟๆ\(\delta S=0\)๏ผ่ซพ็นๅฎ็่กจๆๆๅฐๆๅฐไธๅๅฎๆ้ใๅจ้้ๆๅ่จ่ซๅๆๅฐๆ้\(t\)่ท็ฉ็่ป่ทก\(q\)ๅ่ฎๅ
$$q \to \bar{q} = q+\delta q$$
$$t \to \bar{t} =t+\delta t$$
ไฝๅผๅพๆณจๆ็ๆฏ๏ผ่ป่ทก\(q\)ไฝ็บๆ้\(t\)็ๅฝๆธ๏ผๆๅๅฐ่ช่บซ่ฎๅ็ๅฝฑ้ฟไนๅค๏ผไนๆๅๅฐๆ้ๆน่ฎ็ๆๅฝฑ้ฟ๏ผๅฎ็พฉ\(\Delta q\)่กจ็คบๅฎๆดๅฝฑ้ฟ
$$\Delta q\equiv \bar{q} (\bar{t} )-q(t)$$
$$=\bar{q} (\bar{t} )-q(\bar{t} )+-q(\bar{t} )-q(t)$$
$$=\delta q+\dot{q} \delta t$$
่ๆ
ฎ่ฎๅๅๅพ็ๅทฎๅฅ
$$\delta S=\delta \int L dt=\int \delta L dt+\int L d\delta t$$
็ฌฌไธ้
ไป็ดฐๅฏซไธ็บ
$$\delta L=L \left(\bar{q} (\bar{t} ),\dot{\bar{q}}(\bar{t} ),\bar{t} \right)-L\left(q(t),\dot{q} (t),t\right)$$
$$=L \left(\bar{q} (\bar{t} ),\dot{\bar{q}}(\bar{t} ),\bar{t} \right)-L\left(q(\bar{t} ),\dot{q} (\bar{t} ),\bar{t} \right)+L\left(q(\bar{t} ),\dot{q} (\bar{t} ),\bar{t} \right)-L\left(q(t),\dot{q} (t),t\right)$$
$$={\partial L\over\partial q} \delta q+{\partial L\over \partial \dot{q} } \delta \dot{q} +{dL\over dt} \delta t$$
$$={\partial L\over\partial q} \delta q-\left({d\over dt} {\partial L\over \partial \dot{q} }\right) \delta q+{d\over dt} \left({\partial L\over \partial \dot{q} } \delta q\right)+{dL\over dt} \delta t$$
$$=\left[{\partial L\over\partial q} -{d\over dt} {\partial L\over \partial \dot{q} } \right]\delta q+{d\over dt} \left({\partial L\over \partial \dot{q} } \delta q\right)+{dL\over dt} \delta t$$
ๅ ็บLagrangianๆปฟ่ถณEoM
$${\partial L\over\partial q} -{d\over dt} {\partial L\over \partial \dot{q} } =0 $$
ๆไปฅ็ฌฌไธ้
ๅชๅฉไธ
$$\delta L={d\over dt} \left({\partial L\over \partial \dot{q} } \delta q\right)+{dL\over dt} \delta t$$
็ฌฌไบ้
ๅฎ็ดๆนๅฏซ
$$\int L d\delta t=\int L {d\delta t\over dt} dt$$
ๅฐๅ
ฉ้
ๅไฝต
$$\delta S=\int \left[{d\over dt} \left({\partial L\over \partial \dot{q} } \delta q\right)+{dL\over dt} \delta t\right] dt+\int {L d\delta t\over dt} dt$$
$$=\int {d\over dt} \left[{\partial L\over \partial \dot{q} } \delta q+L\delta t\right] dt$$
ไฝๅ ็บ\(\delta q\)ๅชๆฏ่ป่ทก่ช่บซ็่ฎๅ๏ผๅฟ
้ ่ๆ
ฎๅฐๅฎๆด็่ฎๅ\(\Delta q\)๏ผๅฉ็จ
$$\delta q=\Delta q-\dot{q} \delta t$$
ไปฃๅ
ฅ
$$\delta S=\int {d\over dt} \left[{\partial L\over \partial \dot{q} } \left(\Delta q-\delta t \right)+L\delta t\right] dt$$
$$=\int {d\over dt} \left[{\partial L\over \partial \dot{q} } \Delta q-\left({\partial L\over \partial \dot{q} } \dot{q} -L\right)\delta t\right] dt$$
ๅฆๆ็ถ้่ฎๅๅพไธ่ฎ๏ผๅณ\(\delta S=0\)๏ผไปฃ่กจ
$$ {d\over dt} \left[{\partial L\over \partial \dot{q} } \Delta q\right]=0 \to {\partial L\over \partial \dot{q} } \Delta q =const.$$
$$ {d\over dt} \left[ \left({\partial L\over \partial \dot{q} } \dot{q} -L\right)\delta t\right]=0 \to \left({\partial L\over \partial \dot{q} } \dot{q} -L\right)\delta t = const.$$
ๅฐๆ่ป่ทกq่ฎๅไธ่ฎ็ๅฎๆ้็บ
$${\partial L\over \partial \dot{q} } =p$$
๏ผ็บๅ้ๅฎๆใ
ๅฐๆๆ้t่ฎๅไธ่ฎ็ๅฎๆ้็บ
$$H={\partial L\over \partial \dot{q} } \dot{q} -L$$
็บ่ฝ้ๅฎๆใ