ๅคๅ…ธ่ซพ็‰นๅฎš็†

่ซพ็‰นๅฎš็†ไฝœ็‚บๅคๅ…ธๅŠ›ๅญธ้‡่ฆ็š„ๅฎš็†๏ผŒไนŸๆ˜ฏLagrangianใ€Hamiltonian่ถ…่ถŠ็‰›้ “ๅŠ›ๅญธ็š„้‡่ฆๅŽŸๅ› ใ€‚่ซพ็‰นๅฎš็†็š„่กจ่ฟฐ็‚บ๏ผŒ็•ถ็ณป็ตฑๆปฟ่ถณEoMใ€ๆˆ–ๆœ€ๅฐไฝœ็”จ้‡ๅŽŸ็†ไน‹ไธ‹๏ผŒๆˆ‘ๅ€‘่‹ฅ็ตฆไบˆAction Sไธ€ๅ€‹่ฎŠๅŒ–\(\delta \alpha\)ๅปๅฏไปฅไฟๆŒ\(\delta S=0\)๏ผŒ่ซพ็‰นๅฎš็†่กจๆ˜Žๆœƒๅฐๆ‡‰ๅˆฐไธ€ๅ€‹ๅฎˆๆ†้‡ใ€‚ๅœจ้€™้‚Šๆˆ‘ๅ€‘่จŽ่ซ–ๅŒๆ™‚ๅฐๆ™‚้–“\(t\)่ทŸ็‰ฉ็†่ปŒ่ทก\(q\)ๅš่ฎŠๅˆ† $$q \to \bar{q} = q+\delta q$$ $$t \to \bar{t} =t+\delta t$$ ไฝ†ๅ€ผๅพ—ๆณจๆ„็š„ๆ˜ฏ๏ผŒ่ปŒ่ทก\(q\)ไฝœ็‚บๆ™‚้–“\(t\)็š„ๅ‡ฝๆ•ธ๏ผŒๆœƒๅ—ๅˆฐ่‡ช่บซ่ฎŠๅˆ†็š„ๅฝฑ้Ÿฟไน‹ๅค–๏ผŒไนŸๆœƒๅ—ๅˆฐๆ™‚้–“ๆ”น่ฎŠ็š„ๆœ‰ๅฝฑ้Ÿฟ๏ผŒๅฎš็พฉ\(\Delta q\)่กจ็คบๅฎŒๆ•ดๅฝฑ้Ÿฟ $$\Delta q\equiv \bar{q} (\bar{t} )-q(t)$$ $$=\bar{q} (\bar{t} )-q(\bar{t} )+-q(\bar{t} )-q(t)$$ $$=\delta q+\dot{q} \delta t$$ ่€ƒๆ…ฎ่ฎŠๅˆ†ๅ‰ๅพŒ็š„ๅทฎๅˆฅ $$\delta S=\delta \int L dt=\int \delta L dt+\int L d\delta t$$ ็ฌฌไธ€้ …ไป”็ดฐๅฏซไธ‹็‚บ $$\delta L=L \left(\bar{q} (\bar{t} ),\dot{\bar{q}}(\bar{t} ),\bar{t} \right)-L\left(q(t),\dot{q} (t),t\right)$$ $$=L \left(\bar{q} (\bar{t} ),\dot{\bar{q}}(\bar{t} ),\bar{t} \right)-L\left(q(\bar{t} ),\dot{q} (\bar{t} ),\bar{t} \right)+L\left(q(\bar{t} ),\dot{q} (\bar{t} ),\bar{t} \right)-L\left(q(t),\dot{q} (t),t\right)$$ $$={\partial L\over\partial q} \delta q+{\partial L\over \partial \dot{q} } \delta \dot{q} +{dL\over dt} \delta t$$ $$={\partial L\over\partial q} \delta q-\left({d\over dt} {\partial L\over \partial \dot{q} }\right) \delta q+{d\over dt} \left({\partial L\over \partial \dot{q} } \delta q\right)+{dL\over dt} \delta t$$ $$=\left[{\partial L\over\partial q} -{d\over dt} {\partial L\over \partial \dot{q} } \right]\delta q+{d\over dt} \left({\partial L\over \partial \dot{q} } \delta q\right)+{dL\over dt} \delta t$$ ๅ› ็‚บLagrangianๆปฟ่ถณEoM $${\partial L\over\partial q} -{d\over dt} {\partial L\over \partial \dot{q} } =0 $$ ๆ‰€ไปฅ็ฌฌไธ€้ …ๅชๅ‰ฉไธ‹ $$\delta L={d\over dt} \left({\partial L\over \partial \dot{q} } \delta q\right)+{dL\over dt} \delta t$$ ็ฌฌไบŒ้ …ๅ–ฎ็ด”ๆ”นๅฏซ $$\int L d\delta t=\int L {d\delta t\over dt} dt$$ ๅฐ‡ๅ…ฉ้ …ๅˆไฝต $$\delta S=\int \left[{d\over dt} \left({\partial L\over \partial \dot{q} } \delta q\right)+{dL\over dt} \delta t\right] dt+\int {L d\delta t\over dt} dt$$ $$=\int {d\over dt} \left[{\partial L\over \partial \dot{q} } \delta q+L\delta t\right] dt$$ ไฝ†ๅ› ็‚บ\(\delta q\)ๅชๆ˜ฏ่ปŒ่ทก่‡ช่บซ็š„่ฎŠๅˆ†๏ผŒๅฟ…้ ˆ่€ƒๆ…ฎๅˆฐๅฎŒๆ•ด็š„่ฎŠๅŒ–\(\Delta q\)๏ผŒๅˆฉ็”จ $$\delta q=\Delta q-\dot{q} \delta t$$ ไปฃๅ…ฅ $$\delta S=\int {d\over dt} \left[{\partial L\over \partial \dot{q} } \left(\Delta q-\delta t \right)+L\delta t\right] dt$$ $$=\int {d\over dt} \left[{\partial L\over \partial \dot{q} } \Delta q-\left({\partial L\over \partial \dot{q} } \dot{q} -L\right)\delta t\right] dt$$ ๅฆ‚ๆžœ็ถ“้Ž่ฎŠๅˆ†ๅพŒไธ่ฎŠ๏ผŒๅณ\(\delta S=0\)๏ผŒไปฃ่กจ $$ {d\over dt} \left[{\partial L\over \partial \dot{q} } \Delta q\right]=0 \to {\partial L\over \partial \dot{q} } \Delta q =const.$$ $$ {d\over dt} \left[ \left({\partial L\over \partial \dot{q} } \dot{q} -L\right)\delta t\right]=0 \to \left({\partial L\over \partial \dot{q} } \dot{q} -L\right)\delta t = const.$$ ๅฐๆ‡‰่ปŒ่ทกq่ฎŠๅˆ†ไธ่ฎŠ็š„ๅฎˆๆ†้‡็‚บ $${\partial L\over \partial \dot{q} } =p$$ ๏ผŒ็‚บๅ‹•้‡ๅฎˆๆ†ใ€‚
ๅฐๆ‡‰ๆ™‚้–“t่ฎŠๅˆ†ไธ่ฎŠ็š„ๅฎˆๆ†้‡็‚บ $$H={\partial L\over \partial \dot{q} } \dot{q} -L$$ ็‚บ่ƒฝ้‡ๅฎˆๆ†ใ€‚