Lagrangian็ไธๅฏไธๆง
็่ซๅๅญธ็่ชฒ็จไธญ๏ผ้ฝๆๅญธ้็ถ\(Lagrangian\)ๆทปๅ ไธๅๅฝๆธ\(f=f(q,t)\)ๆ้็ๅ
จๅพฎๅ้
\({df\over dt}\)๏ผ\(LโL+{df\over dt}\)ไธฆไธๆๆน่ฎEoMใ้ๅฏไปฅๅพๅ
ฉๅ้จๅไพ็ใ็ฌฌไธ็จฎๆฏๆ็ฐกๅฎ็ๅพ่ฎๅ็็ซฏ้ป๏ผ
$$\delta S=\delta \int _a^b (L+{df\over dt})dt$$
$$=\delta \left[\int _a^b Ldt+\int _a^b {df\over dt} dt \right]$$
$$=\delta \left[\int _a^b Ldt+f(b)-f(a)\right]$$
$$=\delta \int _a^b Ldt+\delta f(b)-\delta f(a)$$
ไฝๅ ็บ็ซฏ้ปไธๅ่ฎๅ๏ผๆไปฅ\(\delta f(b)=\delta f(a)=0\)๏ผ่ช็ถ็
$$\delta \int _a^b \left(L+{df\over dt}\right)dt=\delta \int _a^b Ldt=0$$
ๅฆๅคไธ็จฎๆฏ็ดๆฅๅฑ้๏ผ่งๅฏ\(L+\dot{f}\) ๆฏๅฆๆปฟ่ถณ
\({d\over dt} {\partial \over\partial \dot{x}}\left( L+\dot{f} \right) -{\partial \over\partial x}\left( L+\dot{f} \right)=0\)
$${d\over dt} {\partial \over\partial \dot{x}}\left( L+\dot{f} \right) -{\partial \over\partial x}\left( L+\dot{f} \right)={d\over dt} {\partial L\over\partial \dot{x}} -{\partial L\over\partial x}+\color{red}{{d\over dt} {\partial \dot{f} \over\partial \dot{x}} -{\partial \dot{f} \over\partial x}}$$
็ด
่ฒ้
ๆๅๅฏไปฅ่งๅฏๅ
ฉไปถไบ๏ผๅ ็บ\(f=f(x,t)\)
$$df={\partial f\over\partial x} dx+{\partial f\over\partial \dot{x}} d\dot{x} +{\partial f\over\partial t} dt$$
$$\to \dot{f} ={\partial \over\partial x} \dot{x} +{\partial f\over\partial \dot{x}} \ddot{x} +{\partial f\over\partial t}$$
ๆไปฅ
$${ \partial \dot{f} \over\partial \dot{x}} ={\partial f\over\partial x}\to dot\ cancellation$$
$${\partial \over\partial x} \dot{f}={\partial \over\partial x} \left({\partial \over\partial x} \dot{x} +{\partial f\over\partial \dot{x}} \ddot{x} +{\partial f\over\partial t}\right)$$
$$=\left({\partial \over\partial x} {\partial f\over\partial x}\right) \dot{x} +\left({\partial \over\partial x} {\partial f\over\partial \dot{x}} \right) \ddot{x} +\left({\partial \over\partial x} {\partial f\over\partial t}\right)$$
$$={d\over dt} \left({\partial f\over\partial x}\right)\to{d\over dt},{\partial \over\partial x} commute $$
ๆๅพๅฐ็ด
่ฒ้
็บ้ถ
$$\color{red}{{d\over dt} {\partial \dot{f} \over\partial \dot{x} }-{\partial \dot{f} \over\partial x}={d\over dt} {\partial f\over\partial x}-{d\over dt} {\partial f\over\partial x}=0}$$
ๆ
$${d\over dt} {\partial \over\partial \dot{x}}\left( L+\dot{f} \right) -{\partial \over\partial x}\left( L+\dot{f} \right)={d\over dt} {\partial L\over\partial \dot{x}} -{\partial L\over\partial x}=0$$
ๆทปๅ \(\dot{f}\) ไธๆๆน่ฎEoMใ