Lagrangian็š„ไธๅ”ฏไธ€ๆ€ง

็†่ซ–ๅŠ›ๅญธ็š„่ชฒ็จ‹ไธญ๏ผŒ้ƒฝๆœ‰ๅญธ้Ž็•ถ\(Lagrangian\)ๆทปๅŠ ไธ€ๅ€‹ๅ‡ฝๆ•ธ\(f=f(q,t)\)ๆ™‚้–“็š„ๅ…จๅพฎๅˆ†้ …\({df\over dt}\)๏ผŒ\(Lโ†’L+{df\over dt}\)ไธฆไธๆœƒๆ”น่ฎŠEoMใ€‚้€™ๅฏไปฅๅพžๅ…ฉๅ€‹้ƒจๅˆ†ไพ†็œ‹ใ€‚็ฌฌไธ€็จฎๆ˜ฏๆœ€็ฐกๅ–ฎ็š„ๅพž่ฎŠๅˆ†็š„็ซฏ้ปž๏ผŒ $$\delta S=\delta \int _a^b (L+{df\over dt})dt$$ $$=\delta \left[\int _a^b Ldt+\int _a^b {df\over dt} dt \right]$$ $$=\delta \left[\int _a^b Ldt+f(b)-f(a)\right]$$ $$=\delta \int _a^b Ldt+\delta f(b)-\delta f(a)$$ ไฝ†ๅ› ็‚บ็ซฏ้ปžไธๅš่ฎŠๅˆ†๏ผŒๆ‰€ไปฅ\(\delta f(b)=\delta f(a)=0\)๏ผŒ่‡ช็„ถ็š„ $$\delta \int _a^b \left(L+{df\over dt}\right)dt=\delta \int _a^b Ldt=0$$ ๅฆๅค–ไธ€็จฎๆ˜ฏ็›ดๆŽฅๅฑ•้–‹๏ผŒ่ง€ๅฏŸ\(L+\dot{f}\) ๆ˜ฏๅฆๆปฟ่ถณ \({d\over dt} {\partial \over\partial \dot{x}}\left( L+\dot{f} \right) -{\partial \over\partial x}\left( L+\dot{f} \right)=0\) $${d\over dt} {\partial \over\partial \dot{x}}\left( L+\dot{f} \right) -{\partial \over\partial x}\left( L+\dot{f} \right)={d\over dt} {\partial L\over\partial \dot{x}} -{\partial L\over\partial x}+\color{red}{{d\over dt} {\partial \dot{f} \over\partial \dot{x}} -{\partial \dot{f} \over\partial x}}$$ ็ด…่‰ฒ้ …ๆˆ‘ๅ€‘ๅฏไปฅ่ง€ๅฏŸๅ…ฉไปถไบ‹๏ผŒๅ› ็‚บ\(f=f(x,t)\) $$df={\partial f\over\partial x} dx+{\partial f\over\partial \dot{x}} d\dot{x} +{\partial f\over\partial t} dt$$ $$\to \dot{f} ={\partial \over\partial x} \dot{x} +{\partial f\over\partial \dot{x}} \ddot{x} +{\partial f\over\partial t}$$ ๆ‰€ไปฅ $${ \partial \dot{f} \over\partial \dot{x}} ={\partial f\over\partial x}\to dot\ cancellation$$
$${\partial \over\partial x} \dot{f}={\partial \over\partial x} \left({\partial \over\partial x} \dot{x} +{\partial f\over\partial \dot{x}} \ddot{x} +{\partial f\over\partial t}\right)$$ $$=\left({\partial \over\partial x} {\partial f\over\partial x}\right) \dot{x} +\left({\partial \over\partial x} {\partial f\over\partial \dot{x}} \right) \ddot{x} +\left({\partial \over\partial x} {\partial f\over\partial t}\right)$$ $$={d\over dt} \left({\partial f\over\partial x}\right)\to{d\over dt},{\partial \over\partial x} commute $$ ๆœƒๅพ—ๅˆฐ็ด…่‰ฒ้ …็‚บ้›ถ $$\color{red}{{d\over dt} {\partial \dot{f} \over\partial \dot{x} }-{\partial \dot{f} \over\partial x}={d\over dt} {\partial f\over\partial x}-{d\over dt} {\partial f\over\partial x}=0}$$ ๆ•… $${d\over dt} {\partial \over\partial \dot{x}}\left( L+\dot{f} \right) -{\partial \over\partial x}\left( L+\dot{f} \right)={d\over dt} {\partial L\over\partial \dot{x}} -{\partial L\over\partial x}=0$$ ๆทปๅŠ \(\dot{f}\) ไธๆœƒๆ”น่ฎŠEoMใ€‚