Point Transformation、Form Invariant和Principle of Relativity
在學物理的時候,最基本的物理法則就是相對性原理 (Principle of Relativity)。其中一種描述為:對所有慣性座標系而言 (本文至少目前不談論廣義相對論),具有相同的物理定律。換句話說,就是所有慣性觀察者用的都是同一套物理、都具有一樣的物理方程式,也就是說「形式不變」(Form Invariant)。以牛頓力學來說,\(F=ma\) 換一個慣性座標還是\(\bar{F} = m\bar{a}\) 。我的老師,周定一老師,常常用很生動的比喻:如果今天物理定律不具有相對性原理,那無窮多個慣性座標就會有無窮多套物理定律,做出來的手機根本就不能用,因為搭上飛機就會換一套物理定律,地面做出來的裝置用的物理就在飛機上變得不適用。可以說相對性原理是研究物理學裡面一個最基本的假設。既然牛頓力學具有形式不變,那我們也要來討論 Euler-Lagrange equation 是否也在不同座標系下,也能「形式不變」。
在這邊我們先討論最基本的例子,稱為點變換 (Point Transformation)。假設今天在\(q\)慣性座標系研究出來的物理滿足:
$$L = L(\dot{q}, q, t)$$
$$\frac{d}{dt} \frac{\partial L}{\partial \dot{q}} - \frac{\partial L}{\partial q} = 0$$
有另外一位觀察者,他寫下的座標採用 \(s\) 座標系,兩者之間有一個可逆的函數關係:
$$s = s(q, t) \leftrightarrow q = q(s, t)$$
$$dq = \frac{\partial q}{\partial s} ds + \frac{\partial q}{\partial t} dt$$
$$\rightarrow \dot{q} = \frac{\partial q}{\partial s} \dot{s} + \frac{\partial q}{\partial t}$$
$$\rightarrow d\dot{q} = d\left(\frac{\partial q}{\partial s}\right) \dot{s} + \left(\frac{\partial q}{\partial s}\right)d\dot{s} + d\left(\frac{\partial q}{\partial t}\right)$$
$$=\left(\frac{\partial q}{\partial s}\right) d\dot{s} + \dot{s}\left(\frac{\partial^2 q}{\partial s^2} ds + \frac{\partial^2 q}{\partial t \partial s} dt\right) + \left(\frac{\partial^2 q}{\partial s \partial t} ds + \frac{\partial^2 q}{\partial t^2} dt\right)$$
$$=\frac{\partial q}{\partial s} d\dot{s} + \left[\dot{s} \frac{\partial^2 q}{\partial s^2} + \frac{\partial^2 q}{\partial s \partial t}\right]ds + \left[\frac{\partial^2 q}{\partial t \partial s} + \frac{\partial^2 q}{\partial t^2}\right]dt$$
$$\equiv \frac{\partial \dot{q}}{\partial \dot{s}} d\dot{s} + \frac{\partial \dot{q}}{\partial s} ds + \frac{\partial \dot{q}}{\partial t} dt$$
$$\rightarrow \dot{q} = \dot{q}(\dot{s}, s, t)$$
首先先看一下 Lagrangian \(L\):
$$dL = \frac{\partial L}{\partial \dot{q}} d\dot{q} + \frac{\partial L}{\partial q} dq + \frac{\partial L}{\partial t} dt$$
$$=\frac{\partial L}{\partial \dot{q}} \left(\frac{\partial \dot{q}}{\partial \dot{s}} d\dot{s} + \frac{\partial \dot{q}}{\partial s} ds + \frac{\partial \dot{q}}{\partial t} dt\right) + \frac{\partial L}{\partial q} \left(\frac{\partial q}{\partial s} ds + \frac{\partial q}{\partial t} dt\right) + \frac{\partial L}{\partial t} dt$$
$$=\left(\frac{\partial L}{\partial \dot{q}} \frac{\partial \dot{q}}{\partial \dot{s}} d\dot{s} + \frac{\partial L}{\partial \dot{q}} \frac{\partial \dot{q}}{\partial s} ds + \frac{\partial L}{\partial \dot{q}} \frac{\partial \dot{q}}{\partial t} dt\right) + \left(\frac{\partial L}{\partial q} \frac{\partial q}{\partial s} ds + \frac{\partial L}{\partial q} \frac{\partial q}{\partial t} dt\right) + \frac{\partial L}{\partial t} dt$$
$$=\frac{\partial L}{\partial \dot{q}} \frac{\partial \dot{q}}{\partial \dot{s}} d\dot{s} + \left(\frac{\partial L}{\partial \dot{q}} \frac{\partial \dot{q}}{\partial s} + \frac{\partial L}{\partial q} \frac{\partial q}{\partial s}\right)ds + \left(\frac{\partial L}{\partial \dot{q}} \frac{\partial \dot{q}}{\partial t} + \frac{\partial L}{\partial q} \frac{\partial q}{\partial t}\right)dt + \frac{\partial L}{\partial t} dt$$
$$\equiv \frac{\partial L}{\partial \dot{s}} d\dot{s} + \frac{\partial L}{\partial s} ds + \frac{\partial L}{\partial t} dt$$
$$\rightarrow L = L(\dot{s}, s, t)$$
確認在 Point Transformation 之後,Lagrangian \(L\) 在 \(s\) 座標下仍然只是 \(\dot{s}, s, t\)的函數。在此我們可以直接套用變分流程,就說明 Lagrangian \(L(\dot{s}, s, t)\) 滿足:
$$\frac{d}{dt} \frac{\partial L}{\partial \dot{s}} - \frac{\partial L}{\partial s} = 0$$
當然,也可以採用數學直接計算。從原本的 Euler-Lagrange equation 出發:
$$\frac{d}{dt} \frac{\partial L}{\partial \dot{q}} - \frac{\partial L}{\partial q} = 0 \rightarrow \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{s}} \color{red}{\frac{\partial \dot{s}}{\partial \dot{q}}}\right) - \left(\frac{\partial L}{\partial \dot{s}} \frac{\partial \dot{s}}{\partial q} + \frac{\partial L}{\partial s} \frac{\partial s}{\partial q}\right) = 0$$
紅色利用 dot cancellation \(\color{red}{\frac{\partial \dot{s}}{\partial \dot{q}} = \frac{\partial s}{\partial q}}\):
$$\rightarrow \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{s}} \color{red}{\frac{\partial s}{\partial q}}\right) - \left(\frac{\partial L}{\partial \dot{s}} \frac{\partial \dot{s}}{\partial q} + \frac{\partial L}{\partial s} \frac{\partial s}{\partial q}\right) = 0$$
$$\rightarrow \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{s}}\right) \frac{\partial s}{\partial q} + \frac{\partial L}{\partial \dot{s}} \frac{\partial \dot{s}}{\partial q} - \frac{\partial L}{\partial \dot{s}} \frac{\partial \dot{s}}{\partial q} - \frac{\partial L}{\partial s} \frac{\partial s}{\partial q} = 0$$
因為 \(\frac{d}{dt} \left(\frac{\partial s}{\partial q}\right) = \frac{\partial \dot{s}}{\partial q}\) (only if \(s = s(q, t)\)):
$$\rightarrow \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{s}}\right) \frac{\partial s}{\partial q} + \frac{\partial L}{\partial \dot{s}} \frac{\partial \dot{s}}{\partial q} - \frac{\partial L}{\partial \dot{s}} \frac{\partial \dot{s}}{\partial q} - \frac{\partial L}{\partial s} \frac{\partial s}{\partial q} = 0$$
$$\rightarrow \left[\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{s}}\right) - \frac{\partial L}{\partial s}\right] \frac{\partial s}{\partial q} = 0$$
因為 \(\frac{\partial s}{\partial q}\) 可逆且任意,所以:
$$\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{s}}\right) - \frac{\partial L}{\partial s} = 0$$
在 \(s\) 座標下仍然滿足 Euler-Lagrange equation。在這邊可以注意到,\(s = s(q, t)\) 其實不一定是慣性座標,但仍然滿足 Euler-Lagrange equation,可見 Euler-Lagrange equation 強大的地方。