ๅ‹•้‡็ฉบ้–“็š„Lagrangian

Lagrangian equationไธๅชๅฏไปฅๅœจ\((q,\dot{q} ,t)\)ไธญๆ่ฟฐ๏ผŒไนŸๅฏไปฅๅœจๅ‹•้‡็ฉบ้–“\((p,\dot{p} ,t)\)ไธญๆ่ฟฐ๏ผŒ่ฝ‰ๆ›ๅฆ‚ไธ‹๏ผš $$ p={\partial L \over \partial \dot{q}} $$ $$\dot{p} ={d\over dt} {\partial L\over\partial \dot{q}}={\partial L\over\partial q}$$ \(p\)็‚บๅปฃ็พฉๅ‹•้‡ใ€‚ๅˆฉ็”จ\(L=L(q,\dot{q} ,t)\)๏ผŒ $$dL=\dot{p} dq+pd\dot{q} +{\partial L\over\partial t} dt$$ $$=d(\dot{p} q)-qd\dot{p} +d(p\dot{q} )-\dot{q} dp+{\partial L\over\partial t} dt$$ $$=\color{red}{d(\dot{p} q+p\dot{q} )}-qd\dot{p} -\dot{q} dp+{\partial L\over\partial t} dt$$ ็ด…่‰ฒ้ …็งป้ … $$d \left(L\color{red}{-\dot{p} q-p\dot{q}} \right)=-qd\dot{p} -\dot{q} dp+{\partial L\over\partial t} dt$$ ๅฎš็พฉๆ–ฐ็š„Lagrangian \(\bar{L}\) $$\bar{L} \equiv L-\dot{p} q-p\dot{q} =L-{d\over dt} (pq)$$ ๅพ—ๅˆฐ\(d\bar{L}\) $$ d\bar{L}=-qd\dot{p} -\dot{q} dp+{\partial L\over\partial t} dt$$ ๆฏ”่ผƒๅทฆๅณๅ…ฉ้‚Šๅฏไปฅๅพ—ๅˆฐ $${\partial \bar{L}\over\partial \dot{p} }=-q$$ $${\partial \bar{L}\over\partial p}=-\dot{q}$$ $$\to {d\over dt} {\partial \bar{L}\over\partial \dot{p}}={\partial \bar{L}\over\partial p}$$ ็‚บๅ‹•้‡็ฉบ้–“็š„EoMใ€‚ๅฏไปฅๆณจๆ„ๅˆฐๅฝขๅผไธ่ฎŠ(Form invariant)ใ€‚