Free Particle Action的變分

在相對論性下,描述Free particle我們會利用4-displacement $$\eta =\eta ^\mu \hat{e} _\mu =(\tau ,\overrightarrow{0} )_{porper}=(t,\overrightarrow{\eta})$$ 來描述粒子的軌跡,其中\(\tau\) 是particle的proper time。這邊採用\(\eta ^\mu\) 與\(x^\mu\) 區分軌跡與時空(因應後續諾特定理討論,需嚴謹區分軌跡和時空,軌跡是物理量,時空是座標,是不同的概念);描述粒子速度利用4-Velocity \(U=U^\mu \hat{e} _\mu =(\gamma c,\gamma \overrightarrow{v} )={d\eta ^\mu \over d\tau} \hat{e} _\mu\) ,其中\(\tau\) 是particle的proper time。更進一步說\(U^\mu =U^\mu (x^\nu )\),速度\(U^\mu\) 會隨在時空的不同座標\(x^\nu\) 發生改變。在這邊的想法是,一個Free particle從時空中a跑到b,我們針對不同路徑\(\eta ^\mu\) 下的Action \(S_P\)去算極值,即對\(x^\mu\) 作變分
迷失函數的梯度轉移示意圖 $$\eta ^\mu \to \eta ^\mu +\delta \eta ^\mu $$ $$\delta \eta ^\mu (a)=\delta \eta ^\mu (b)=0$$ Free particle的Action \(S_P\)為 $$S_P=\int _a^b -mc^2 d\tau $$ 經過變分 $$\delta S_P=\delta \int _a^b -mc^2 d\tau =-mc^2 \int _a^b \delta d\tau $$ 看起來\(d\tau \)好像與\(\eta ^\mu \to \eta ^\mu +\delta \eta ^\mu\) 變分無關,不過回憶一件事情 $$∵c^2 d\tau ^2=d\eta ^\mu d\eta _\mu $$ $$∴cd\tau =\sqrt{d\eta ^\mu d\eta _\mu}$$ 所以 $$\delta S_P=-mc\int _a^b \delta \sqrt{d\eta ^\mu d\eta _\mu}$$ $$=-mc\int _a^b {1\over 2} {\color{red}{\delta d\eta ^\mu \cdot d\eta _\mu +d\eta ^\mu \cdot \delta d\eta _\mu} \over \sqrt{d\eta ^\mu d\eta _\mu}} $$

進階:Thm.4:
對Scalar變分與上下標無關 回憶度規張量Metric Tensor \(g_{\mu \nu}\) : $$g_{\mu \nu} =\hat{e} _\mu \cdot \hat{e} _\nu $$ $$g_{\mu \nu} =g_\nu \mu $$ $$g^{\mu \nu} \equiv (g_{\mu \nu} )^{-1}$$ \(g^{\mu \nu} g_{\nu \omega} = \delta ^\mu _\omega \)(Delta funcion,暫時不要跟變分\(\delta\) 搞混)。 度規張量\(g_{\mu \nu}\) 是時空的內稟性質(Intrinsic Property),與\(x^\mu\) 無關(暫時只考慮狹義相對論,廣義相對論就會有影響),意思是對\(x^\mu\) 變分與度規\(g_{\mu \nu}\) 無關。度規張量可以用作上下標轉換(Index lowering or raising) $$x^\mu =g^{\mu \nu} x_\nu $$ $$x_\mu =g_{\mu \nu} x^\nu $$ 因為對\(x^\mu\) 變分與度規\(g_{\mu \nu}\) 無關,所以 $$\delta x^\mu =g^{\mu \nu} \delta x_\nu$$ $$\delta x_\mu =g_{\mu \nu} \delta x^\nu $$ 對一個Scalar作變分,例如\(x^\mu y_\mu \)是一個Scalar \(x^\mu y_\mu =x_\mu y^\mu \) $$\delta (x^\mu y_\mu )=\delta x^\mu \cdot y_\mu +x^\mu \cdot \delta y_\mu $$ $$=g^{\mu \nu} \delta x_\nu \cdot g_{\mu \omega} y^\omega +g^{\mu \nu} x_\nu \cdot g_{\mu \omega} \delta y^\omega $$ $$=g^{\mu \nu} g_{\mu \omega} (\delta x_\nu \cdot y^\omega +x_\nu \cdot \delta y^\omega )=g^{\color{red}{\nu \mu}} g_{\mu \omega} \delta (x_\nu y^\omega )$$ $$= \delta ^\nu _\omega \delta (x_\nu y^\omega )=\delta (x_\omega y^\omega )=\delta (x_\mu y^\mu )$$ 同理 $$x^\mu \delta y_\mu =x_\mu \delta y^\mu $$ 所以 $$\color{red}{\delta dx^\mu \cdot dx_\mu +dx^\mu \cdot \delta dx_\mu} $$ $$=\delta dx^\mu \cdot dx_\mu +dx_\mu \cdot \delta dx^\mu $$ $$=2\delta dx^\mu \cdot dx_\mu $$

$$\delta S_P=-mc\int _a^b {1\over 2} {2\delta d\eta ^\mu\cdot d\eta _\mu \over \sqrt{d\eta ^\mu d\eta _\mu} } $$ $$= -mc\int _a^b {\delta d\eta ^\mu \cdot d\eta _\mu \over cd\tau}$$ $$ =-m\int _a^b \delta d\eta ^\mu \cdot U_\mu $$ 利用Thm.1的方法,我們將\(\delta dx^\mu \)對調成\(d\delta x^\mu\) ,並作分部積分 $$\delta S_P=-m\int _a^b U_\mu d\delta \eta ^\mu $$ $$=\color{red}{ -\left[ U_\mu \delta \eta ^\mu \right]\Big| _a^b}+m\int _a^b dU_\mu \delta \eta ^\mu$$ 邊界項因為變分邊界\(\delta \eta ^\mu (a)=\delta \eta ^\mu (b)=0\),後面那一項利用Thm.3同乘同除\(d\tau\) 不影響變分 $$\delta S_P=m\int _a^b dU_\mu \delta \eta ^\mu $$ $$ =\int _a^b {m (dU_\mu )\over d\tau} \delta \eta ^\mu d\tau $$ 所以對Free particle而言,\(\delta S_P=0\)使得 \(m {dU_\mu \over d\tau} =0\) 觀察\(\mu =1\sim 3\) $$m {d\overrightarrow{v}\over d\tau} =0$$ Free particle沒有加速度,保持等速運動。