Free Particle Action的變分
在相對論性下,描述Free particle我們會利用4-displacement
$$\eta =\eta ^\mu \hat{e} _\mu =(\tau ,\overrightarrow{0} )_{porper}=(t,\overrightarrow{\eta})$$
來描述粒子的軌跡,其中\(\tau\) 是particle的proper time。這邊採用\(\eta ^\mu\) 與\(x^\mu\) 區分軌跡與時空(因應後續諾特定理討論,需嚴謹區分軌跡和時空,軌跡是物理量,時空是座標,是不同的概念);描述粒子速度利用4-Velocity \(U=U^\mu \hat{e} _\mu =(\gamma c,\gamma \overrightarrow{v} )={d\eta ^\mu \over d\tau} \hat{e} _\mu\) ,其中\(\tau\) 是particle的proper time。更進一步說\(U^\mu =U^\mu (x^\nu )\),速度\(U^\mu\) 會隨在時空的不同座標\(x^\nu\) 發生改變。在這邊的想法是,一個Free particle從時空中a跑到b,我們針對不同路徑\(\eta ^\mu\) 下的Action \(S_P\)去算極值,即對\(x^\mu\) 作變分
$$\eta ^\mu \to \eta ^\mu +\delta \eta ^\mu $$
$$\delta \eta ^\mu (a)=\delta \eta ^\mu (b)=0$$
Free particle的Action \(S_P\)為
$$S_P=\int _a^b -mc^2 d\tau $$
經過變分
$$\delta S_P=\delta \int _a^b -mc^2 d\tau =-mc^2 \int _a^b \delta d\tau $$
看起來\(d\tau \)好像與\(\eta ^\mu \to \eta ^\mu +\delta \eta ^\mu\) 變分無關,不過回憶一件事情
$$∵c^2 d\tau ^2=d\eta ^\mu d\eta _\mu $$
$$∴cd\tau =\sqrt{d\eta ^\mu d\eta _\mu}$$
所以
$$\delta S_P=-mc\int _a^b \delta \sqrt{d\eta ^\mu d\eta _\mu}$$
$$=-mc\int _a^b {1\over 2} {\color{red}{\delta d\eta ^\mu \cdot d\eta _\mu +d\eta ^\mu \cdot \delta d\eta _\mu} \over \sqrt{d\eta ^\mu d\eta _\mu}} $$
進階:Thm.4: |
$$\delta S_P=-mc\int _a^b {1\over 2} {2\delta d\eta ^\mu\cdot d\eta _\mu \over \sqrt{d\eta ^\mu d\eta _\mu} } $$ $$= -mc\int _a^b {\delta d\eta ^\mu \cdot d\eta _\mu \over cd\tau}$$ $$ =-m\int _a^b \delta d\eta ^\mu \cdot U_\mu $$ 利用Thm.1的方法,我們將\(\delta dx^\mu \)對調成\(d\delta x^\mu\) ,並作分部積分 $$\delta S_P=-m\int _a^b U_\mu d\delta \eta ^\mu $$ $$=\color{red}{ -\left[ U_\mu \delta \eta ^\mu \right]\Big| _a^b}+m\int _a^b dU_\mu \delta \eta ^\mu$$ 邊界項因為變分邊界\(\delta \eta ^\mu (a)=\delta \eta ^\mu (b)=0\),後面那一項利用Thm.3同乘同除\(d\tau\) 不影響變分 $$\delta S_P=m\int _a^b dU_\mu \delta \eta ^\mu $$ $$ =\int _a^b {m (dU_\mu )\over d\tau} \delta \eta ^\mu d\tau $$ 所以對Free particle而言,\(\delta S_P=0\)使得 \(m {dU_\mu \over d\tau} =0\) 觀察\(\mu =1\sim 3\) $$m {d\overrightarrow{v}\over d\tau} =0$$ Free particle沒有加速度,保持等速運動。