4-Volume \(d^4 x\)與Lagrangian Density \(\mathcal{L}\)
因為時空在相對論下是等價的,利用相對性原理(Principle of Relativity)和最小作用量原理(Principle of least action)的要求,物理學家會將Action S寫成Scalar的形式,從而保證在任何作標系下\(\delta S=0\)。剛剛我們所列下來的Action:
$$S_P=-mc^2 \int _a^b d\tau $$
$$S_{PF}=-{e\over c} \int _a^b A_\mu dx^\mu $$
$$S=S_P+S_{PF}=-mc^2 \int _a^b d\tau -{e\over c} \int _a^b A_\mu dx^\mu $$
$$=\int _a^b -\gamma mc^2-\gamma e \phi+{e\over c} \overrightarrow{A} \cdot \gamma \overrightarrow{v} dt =\int _a^b Ldt$$
雖然Action都滿足Scalar的要求,但是Lagrangian L本身並不是Scalar,因為換到不同座標系下會不一樣,物理學家於是想要進一步將Lagrangian L改寫成Scalar的形式。我們定義4-Volume \(d^4 x=dc\tau dV=dc\tau dxdydz\),並將原本的Action改寫
$$S_P=-mc^2 \int _a^b d\tau =-\int \rho_m dV c^2 \int _a^b d\tau $$
$$=-∬ \rho_m cdc\tau dV =\int -\rho_m cd^4 x $$
$$S_{PF}=-{e\over c} \int _a^b A_\mu dx^\mu =-{\int \rho_e dV \over c} \int _a^b A_\mu {dx^\mu \over d\tau} d\tau $$
$$=-{1 \over c} ∬ \rho_e A_\mu u^\mu d\tau dV =-{1 \over c^2} ∬ A_\mu J^\mu dc\tau d^4 x $$
$$=-{1 \over c^2} \int A_\mu J^\mu d^4 x $$
其中,4-current density \(J=J^\mu \hat{e} _\mu =\rho_e u^\mu \hat{e} _\mu\) 。特別的是\(d^4 x\)是一個不變量Invariant,所以是一個Scalar。另外在加上EM Field的Action \(S_F\)
$$S_F=-{1 \over 16\pi c} \int F_{\mu \nu} F^{\mu \nu} d^4 x $$
$$S=S_P+S_{PF}+S_F$$
$$=\int -\rho_m c-{1\over c^2} A_\mu J^\mu -{1 \over 16\pi c} F_{\mu \nu} F^{\mu \nu} d^4 x$$
$$ \equiv \int \mathcal{L} d^4 x $$
因為4-Volume \(d^4 x\)是一個Scalar,Action也是一個Scalar,所以\(\mathcal{L}\)也是一個Scalar。\(\mathcal{L}\)我們稱為Lagrangian density,Lagrangian density \(\mathcal{L}\)在任何座標系下都是Scalar,形式保持不變:
$$\mathcal{L}=-\rho_m c-{1\over c^2} A_\mu J^\mu -{1 \over 16\pi c} F_{\mu \nu} F^{\mu \nu} $$
進階:\(d^4 x\)是一個不變量Invariant |