4-Volume \(d^4 x\)與Lagrangian Density \(\mathcal{L}\)

因為時空在相對論下是等價的,利用相對性原理(Principle of Relativity)和最小作用量原理(Principle of least action)的要求,物理學家會將Action S寫成Scalar的形式,從而保證在任何作標系下\(\delta S=0\)。剛剛我們所列下來的Action: $$S_P=-mc^2 \int _a^b d\tau $$
$$S_{PF}=-{e\over c} \int _a^b A_\mu dx^\mu $$
$$S=S_P+S_{PF}=-mc^2 \int _a^b d\tau -{e\over c} \int _a^b A_\mu dx^\mu $$ $$=\int _a^b -\gamma mc^2-\gamma e \phi+{e\over c} \overrightarrow{A} \cdot \gamma \overrightarrow{v} dt =\int _a^b Ldt$$ 雖然Action都滿足Scalar的要求,但是Lagrangian L本身並不是Scalar,因為換到不同座標系下會不一樣,物理學家於是想要進一步將Lagrangian L改寫成Scalar的形式。我們定義4-Volume \(d^4 x=dc\tau dV=dc\tau dxdydz\),並將原本的Action改寫 $$S_P=-mc^2 \int _a^b d\tau =-\int \rho_m dV c^2 \int _a^b d\tau $$ $$=-∬ \rho_m cdc\tau dV =\int -\rho_m cd^4 x $$
$$S_{PF}=-{e\over c} \int _a^b A_\mu dx^\mu =-{\int \rho_e dV \over c} \int _a^b A_\mu {dx^\mu \over d\tau} d\tau $$ $$=-{1 \over c} ∬ \rho_e A_\mu u^\mu d\tau dV =-{1 \over c^2} ∬ A_\mu J^\mu dc\tau d^4 x $$ $$=-{1 \over c^2} \int A_\mu J^\mu d^4 x $$ 其中,4-current density \(J=J^\mu \hat{e} _\mu =\rho_e u^\mu \hat{e} _\mu\) 。特別的是\(d^4 x\)是一個不變量Invariant,所以是一個Scalar。另外在加上EM Field的Action \(S_F\) $$S_F=-{1 \over 16\pi c} \int F_{\mu \nu} F^{\mu \nu} d^4 x $$ $$S=S_P+S_{PF}+S_F$$ $$=\int -\rho_m c-{1\over c^2} A_\mu J^\mu -{1 \over 16\pi c} F_{\mu \nu} F^{\mu \nu} d^4 x$$ $$ \equiv \int \mathcal{L} d^4 x $$ 因為4-Volume \(d^4 x\)是一個Scalar,Action也是一個Scalar,所以\(\mathcal{L}\)也是一個Scalar。\(\mathcal{L}\)我們稱為Lagrangian density,Lagrangian density \(\mathcal{L}\)在任何座標系下都是Scalar,形式保持不變: $$\mathcal{L}=-\rho_m c-{1\over c^2} A_\mu J^\mu -{1 \over 16\pi c} F_{\mu \nu} F^{\mu \nu} $$

進階:\(d^4 x\)是一個不變量Invariant
物理proof
因為Time dilation 和 Length contraction相反。如果\(\tau\) 、\(\bar{x}\)是proper time和proper length $$t=\gamma \tau $$ $$x={\bar{x} \over \gamma} $$ 所以 $$dctdx=dc\left(\gamma \tau \right)d{\bar{x} \over \gamma }=dc\tau d\bar{x}$$ 數學proof
回憶Jacobian \(J\) $$dxdy=rdrdθ=J\left(r,\theta\right)drd\theta$$ 其中 $$J\left(r,\theta\right)=\left| \begin{matrix} {\partial x \over \partial r} & {\partial x \over \partial \theta} \\ {\partial y \over \partial r} & {\partial y \over \partial \theta} \end{matrix} \right| =\left| \begin{matrix} {\partial rcos\theta \over \partial r} & {\partial rcos\theta \over \partial \theta} \\ {\partial rsin\theta \over \partial r} & {\partial rsin\theta \over \partial \theta} \end{matrix} \right| $$ $$=\left| \begin{matrix} { cos\theta} & { -rsin\theta} \\ { sin\theta} & { rcos\theta} \end{matrix} \right|=r $$ 同理 $$dc\bar{t} d\bar{x}=J\left(ct,x\right)dctdx=\left| \begin{matrix} {\partial c\bar{t} \over \partial ct} & {\partial c\bar{t} \over \partial x} \\ {\partial \bar{x} \over \partial ct} & {\partial \bar{x} \over \partial x} \end{matrix} \right|dctdx$$ 回憶勞倫茲轉換 $$c\bar{t} =\gamma (ct-\beta x)$$ $$\bar{x}=\gamma (x-\beta ct)$$ 代回去計算 $$dc\bar{t} d \bar{x}=\left| \begin{matrix} \gamma & -\beta \gamma \\ -\beta \gamma & \gamma \end{matrix} \right|dctdx $$ $$=\gamma ^2 (1-\beta ^2 )dctdx=dctdx$$ 所以\(d^4 x\)在勞倫茲轉換下是一個不變量。