Maxwell's equations
在這一部分,我們在給定Source下,討論EM Field的分佈(給定Source下表示我們不對Source下的分佈\(\eta ^\mu\) 作變分)。
$$S_{PF}+S_F=\int -\rho_m c-{1\over c^2} A_\mu J^\mu d^4 +\int-{1 \over 16\pi c} F_{\mu \nu} F^{\mu \nu} d^4 x$$
我們想知道EM Field的分佈,所以我們針對\(A^\mu\) 作變分
$$A^\mu \to A^\mu +\delta A^\mu $$
我們來觀察\(J^\mu \)、\(d^4 x\)、\(F^{\mu \nu}\) 會不會受到影響?

$$J^\mu =\rho_e {dx^\mu \over d\tau} =J^\mu (x^\nu )$$
$$d^4 x=d^4 x(x^\nu )$$
$$F^{\mu \nu} =\partial ^\mu A^\nu -\partial ^\nu A^\mu =F^{\mu \nu} \left(A^\omega \right)$$
可見只有電磁張量\(F^{\mu \nu}\) 會受到\(A^\mu \)的變分\(A^\mu \to A^\mu +\delta A^\mu\) 有關
$$F^{\mu \nu} \left(A^\omega \right)\to F^{\mu \nu} (A^\omega +\delta A^\omega )=F^{\mu \nu} \left(A^\omega \right)+\delta F^{\mu \nu} $$
所以\(S_{PF}\)的變分很簡單
$$\delta S_{PF}=\delta \int -{1 \over c^2} A_\mu J^\mu d^4 x$$
$$ =-{1 \over c^2} \int \delta A_\mu \cdot J^\mu d^4 x $$
至於\(S_F\)的變分就稍嫌複雜
$$S_F=-{1 \over 16 \pi c} \int F_{\mu \nu} F^{\mu \nu} d^4 x$$
$$\delta S_F=-{1 \over 16 \pi c} \delta \int F_{\mu \nu} F^{\mu \nu} d^4 x =-{1 \over 16 \pi c} \int \delta F_{\mu \nu} \cdot F^{\mu \nu} +F_{\mu \nu} \cdot \delta F ^{\mu \nu} d^4 x $$
利用Thm.4: 對Scalar變分與上下標無關,所以\(\delta F_{\mu \nu} \cdot F^{\mu \nu} =F_{\mu \nu} \cdot \delta F ^{\mu \nu}\) ,會有兩倍
$$\delta S_F=-{1 \over 16 \pi c} \int 2\delta F_{\mu \nu} \cdot F^{\mu \nu} d^4 x =-{1 \over 8 \pi c} \int \delta F_{\mu \nu} \cdot F^{\mu \nu} d^4 x $$
$$=-{1 \over 8 \pi c} \int \delta (\partial _\mu A_\nu -\partial _\nu A_\mu )\cdot F^{\mu \nu} d^4 x $$
$$=-{1 \over 8 \pi c} \int \delta (\partial _\mu A_\nu )\cdot F^{\mu \nu} d^4 x +{1 \over 8 \pi c} \int \delta (\partial _\nu A_\mu )\cdot F^{\mu \nu} d^4 x $$
因為每一項\(\mu\) 、\(\nu\) 都是Dummy index,可以互換\(\mu \leftrightarrow \nu \),我們把第一項的\(\mu\) 、\(\nu\) 互換,就可以把兩項合併
$$\delta S_F=-{1 \over 8 \pi c} \int \delta (\partial _{\color{red}{\nu}} A_{\color{red}{\mu}} )\cdot F^{\color{red}{\nu \mu}} d^4 x +{1 \over 8 \pi c} \int \delta (\partial _\nu A_\mu )\cdot F^{\mu \nu} d^4 x $$
$$={1 \over 8 \pi c} \int \delta (\partial _\nu A_\mu )\cdot (-F^\nu \mu +F^{\mu \nu} ) d^4 x $$
回憶電磁張量
$$F^{\mu \nu} =\partial ^\mu A^\nu -\partial ^\nu A^\mu =\left(\begin{matrix}0 & -E_x & -E_y & -E_z\\ E_x & 0 & -B_z & B_y \\ E_y & B_z & 0 & -B_x \\ E_z & -B_y & B_x & 0 \end{matrix}\right)$$
\(F^{\mu \nu} \)是一個反對稱張量,所以\(F^\nu \mu =-F^{\mu \nu} \)
代回去會多兩倍
$$\delta S_F={1 \over 8 \pi c} \int \delta (\partial _\nu A_\mu )\cdot (F^{\color{red}{\mu \nu}} +F^{\mu \nu} ) d^4 x ={1 \over 4 \pi c} \int \delta (\partial _\nu A_\mu )\cdot F^{\mu \nu} d^4 x $$
利用Thm.1的方法,我們將\(\delta\) 和\(\partial _\nu \)對調
$$\delta (\partial _\nu A_\mu )=\partial _\nu (\delta A_\mu )$$
$$\delta S_F={1 \over 4 \pi c} \int \partial _\nu (\delta A_\mu )\cdot F^{\mu \nu} d^4 x $$
利用微分的Chain rule,
$$\partial _\nu (\delta A_\mu )\cdot F^{\mu \nu} =\partial _\nu (\delta A_\mu \cdot F^{\mu \nu} )-\delta A_\mu \cdot \partial _\nu (F^{\mu \nu} )$$
將積分拆成兩項
$$\delta S_F={1 \over 4 \pi c} \int \partial _\nu (\delta A_\mu \cdot F^{\mu \nu} ) d^4 x -{1 \over 4 \pi c} \int \delta A_\mu \cdot \partial _\nu (F^{\mu \nu} ) d^4 x $$
回憶Divergence theorem
$$\int \nabla \cdot \overrightarrow{F}dV =∮ \overrightarrow{F}\cdot d\overrightarrow{S} $$
一個體積分,可以改寫成對體表面的面積分。寫成Levi-Civita symbol
$$\int \partial _\nu F^\nu dV =∮ F^\nu dS_\nu $$
|
所以第一項利用Divergence theorem,但是Boundary上的\(\delta A_\mu =0\),所以
$${1 \over 4 \pi c} \int \partial _\nu (\delta A_\mu \cdot F^{\mu \nu} ) d^4 x ={1 \over 4 \pi c} ∮ \delta A_\mu \cdot F^{\mu \nu} dS_\nu =0$$
所以
$$\delta S_F=-{1 \over 4 \pi c} \int \partial _\nu (F^{\mu \nu} )\cdot \delta A_\mu d^4 x $$
合併\(\delta S_{PF}+\delta S_F\)
$$\delta S_{PF}+\delta S_F=-{1 \over c^2} \int J^\mu \cdot \delta A_\mu d^4 x -{1 \over 4 \pi c} \int \partial _\nu (F^{\mu \nu} )\cdot \delta A_\mu d^4 x$$
$$=\int \left[-{1 \over c^2} J^\mu -{1 \over 4 \pi c} \partial _\nu F^{\mu \nu} \right]\delta A_\mu d^4 x =0$$
會得到
$$-{1 \over c^2} J^\mu -{1 \over 4 \pi c} \partial _\nu F^{\mu \nu} =0$$
$$\partial _\nu F^{\mu \nu} =-{4\pi \over c} J^\mu $$
Recall Maxwell's equation in Gaussian Unit
$$ \nabla \cdot \overrightarrow{E}=4\pi \rho_e$$
$$ \nabla \cdot \overrightarrow{B}=0)$$
$$ \nabla ×\overrightarrow{E}=-{1 \over c} {\partial \overrightarrow{B} \over \partial t}$$
$$ \nabla ×\overrightarrow{B}={4\pi \over c} \overrightarrow{J}+{1 \over c} {\partial \overrightarrow{E} \over \partial t }$$
|
$$\partial _\nu F^{\mu \nu} =-{4\pi \over c} J^\mu \to \left( \begin{matrix} \nabla \cdot \overrightarrow{E}=4\pi \rho_e \\ \nabla ×\overrightarrow{B}={4\pi \over c} \overrightarrow{J}+{1 \over c} {\partial \overrightarrow{E}\over \partial t} \end{matrix}\right)$$
|
$$F_{\mu \nu} =\partial _\mu A_\nu -\partial _\nu A_\mu $$
電磁張量有特別的關係式(Bianchi identity)
$$\partial _\omega F_{\mu \nu} +\partial _\mu F_{\nu \omega} +\partial _\nu F_{\omega \mu} =\partial _{[\omega} F_{\mu \nu ]} =0$$
展開
$$\partial _\omega (\partial _\mu A_\nu -\partial _\nu A_\mu )+\partial _\mu (\partial _\nu A_\omega -\partial _\omega A_\nu )+\partial _\nu (\partial _\omega A_\mu -\partial _\mu A_\omega )=0$$
$$\partial _\omega \partial _\mu A_\nu -\partial _\omega \partial _\nu A_\mu +\partial _\mu \partial _\nu A_\omega -\partial _\mu \partial _\omega A_\nu +\partial _\nu \partial _\omega A_\mu -\partial _\nu \partial _\mu A_\omega =0$$
這條關係式會得到
$$ \partial _\omega F_{\mu \nu} +\partial _\mu F_\nu \omega +\partial _\nu F_\omega \mu =0 \to \left( \begin{matrix} \nabla \cdot \overrightarrow{B}=0 \\ \nabla ×\overrightarrow{E}=-{1 \over c} {\partial \overrightarrow{B} \over \partial t} \end{matrix}\right)$$
|