電磁學中的規範不變性Gauge Invariance
在電磁學中,我們定義Potential \(\phi\)、\(\overrightarrow{A}\)和電場\(\overrightarrow{E}\)、磁場\(\overrightarrow{B}\)的關係:
$$ \overrightarrow{E}=- \nabla \phi -{1 \over c} {\partial \overrightarrow{A}\over \partial t}$$
$$\overrightarrow{B}= \nabla ×\overrightarrow{A} $$
但Potential \(\phi\) 、\(\overrightarrow{A}\)不唯一,可以引入一個Gauge function \(G(ct,\overrightarrow{x} )\)
$$\bar{\phi} =\phi +{1 \over c} {\partial G \over \partial t}$$
$$\overrightarrow{\bar{A}}=\overrightarrow{A}- \nabla G$$
一樣保持電場\(\overrightarrow{E}\)、磁場\(\overrightarrow{B}\)不變
$$\overrightarrow{\bar{E}}=- \nabla \bar{\phi}-{1 \over c} {\partial \overrightarrow{\bar{A}}\over \partial t}$$
$$=- \nabla \phi - \color{red}{\nabla {1 \over c} {\partial G \over \partial t}}-{1 \over c} {\partial \overrightarrow{A}\over \partial t}+\color{red}{{1 \over c} {\partial ( \nabla G)\over\partial t}}$$
$$=- \nabla \phi -{1 \over c} {\partial \overrightarrow{A}\over \partial t}=\overrightarrow{E}$$
$$\overrightarrow{\bar{B}}= \nabla ×\overrightarrow{\bar{A}}= \nabla ×\overrightarrow{A}- \nabla × \nabla G= \nabla ×\overrightarrow{A}=\overrightarrow{B} $$
Note \(\nabla × \nabla G=0\)
$$( \nabla × \nabla G)_i=\varepsilon _{ijk} \partial _j \partial _k G$$
$$={1 \over 2} \varepsilon _{ijk} \partial _j \partial _k G+{1 \over 2} \varepsilon _{ijk} \partial _j \partial _k G$$
$$={1 \over 2} \varepsilon _{ijk} \partial _j \partial _k G+{1 \over 2} \varepsilon _{i\color{red}{kj}} \partial _{\color{red}{k}} \partial _{\color{red}{j}} G$$
$$={1 \over 2} \varepsilon _{ijk} \partial _j \partial _k G \color{red}{-}{1 \over 2} \varepsilon _{i\color{red}{jk}} \partial _j \partial _k G=0$$
|
在相對論中,上述的操作可以寫為4-Potential的形式:
$$(\bar{\phi},\overrightarrow{\bar{A}} )=(\phi ,\overrightarrow{A} )+(\partial _{ct} G,- \nabla G)=(\phi ,\overrightarrow{A} )+(\partial _{ct},- \nabla )G$$
回憶
$$\partial ^\mu =(\partial _{ct},- \nabla )$$
故寫成
$$\bar{A} ^\mu =A^\mu +\partial ^\mu G$$
Coulomb gauge condition:非相對論性Non-relativistic
$$ \nabla \cdot \overrightarrow{A}=0$$
|
Lorenz gauge condition:相對論性,滿足Lorentz transformation
$$ \nabla \cdot \overrightarrow{A}+{1 \over c} {\partial \phi \over \partial t}=0$$
寫成Scalar form
$$\partial _\mu A^\mu =0$$
所以滿足相對論轉換。
|
剛剛已經寫下電場\(\overrightarrow{E}\)、磁場\(\overrightarrow{B}\)在加入Gauge之下保持不變
$$\overrightarrow{\bar{E}}=\overrightarrow{E}$$
$$\overrightarrow{\bar{B}}=\overrightarrow{B}$$
這其實說明,\(F^{\mu \nu}\) 也在加入Gauge之下保持不變:
$$ \bar{F} ^{\mu \nu} =F^{\mu \nu} $$
當然我們也可以寫下證明
$$\bar{F} ^{\mu \nu} =\partial ^\mu \bar{A} ^\nu -\partial ^\nu \bar{A} ^\mu$$
$$=\partial ^\mu (A^\nu +\partial ^\nu G)-\partial ^\nu (A^\mu +\partial ^\mu G)$$
$$=\partial ^\mu A^\nu +\color{red}{\partial ^\mu \partial ^\nu G}-\partial ^\nu A^\mu -\color{red}{\partial ^\nu \partial ^\mu G}$$
$$=\partial ^\mu A^\nu -\partial ^\nu A^\mu =F^{\mu \nu} $$