ๅ ด่ซ–ไธญ็š„Lagrangian densityไธๅ”ฏไธ€ๆ€ง

ๅ‰้ขๆๅˆฐ๏ผŒ็•ถLagrangianๆทปๅŠ ไธ€ๅ€‹ๅ‡ฝๆ•ธ\(f=f(q,t)\)ๆ™‚้–“็š„ๅ…จๅพฎๅˆ†้ …df/dt๏ผŒไธฆไธๆœƒๆ”น่ฎŠEoMใ€‚ๅœจๅ ด่ซ–ไธญไนŸๆœ‰ๅฐๆ‡‰็š„ๆŽจๅปฃ๏ผŒ\(\mathcal{L}\to \bar{\mathcal{L}} =\mathcal{L}+\partial _\mu f^\mu\) ๏ผŒไธ€ๆจฃ่ฆๆณจๆ„็š„ๆ˜ฏ\(f^\mu =f^\mu (\phi ,x^\mu )\)ๅช่ƒฝๆ˜ฏ\((\phi ,x^\mu )\)็š„ๅ‡ฝๆ•ธใ€‚ไธ€ๆจฃๅฏไปฅๅพžๅ…ฉๅ€‹้ƒจๅˆ†ไพ†็œ‹ใ€‚็ฌฌไธ€็จฎๆ˜ฏๆœ€็ฐกๅ–ฎ็š„ๅพž่ฎŠๅˆ†็š„้‚Š็•Œ๏ผŒ $$\delta S=\delta \int (\mathcal{L}+\partial _\mu f^\mu ) d^4 x =\delta \left[\int \mathcal{L}d^4 x +\int \partial _\mu f^\mu d^4 x \right]$$ $$=\delta \int _a^b \mathcal{L}dt+\delta โˆฎ f^\mu d^3 S_\mu =\delta \int _a^b \mathcal{L}dt$$ ๅ…ถไธญ\(\int \partial _\mu f^\mu d^4 x =โˆฎ f^\mu d^3 S_\mu \)ๅˆฉ็”จ้ซ˜ๆ–ฏๅฎš็†๏ผŒ\(\delta โˆฎ f^\mu d^3 S_\mu =0\)ไพ†่‡ชๆ–ผ่ฎŠๅˆ†้‚Š็•Œไธ่ฎŠใ€‚ ๅฆๅค–ไธ€็จฎๆ˜ฏ็›ดๆŽฅๅฑ•้–‹๏ผŒ่ง€ๅฏŸ\(\mathcal{L}+\partial _\mu f^\mu\) ๆ˜ฏๅฆๆปฟ่ถณ $${\partial (\mathcal{L}+\partial _\mu f^\mu )\over\partial \phi} -\partial _\mu {\partial (\mathcal{L}+\partial _\mu f^\mu )\over\partial (\partial _\mu \phi ) }=0$$
$${\partial (\mathcal{L}+\partial _\mu f^\mu )\over\partial \phi} -\partial _\mu {\partial (\mathcal{L}+\partial _\mu f^\mu )\over\partial (\partial _\mu \phi ) }= {\partial\mathcal{L}\over\partial \phi} -\partial _\mu {\partial L\over\partial (\partial _\mu \phi ) }+{\partial (\partial _\mu f^\mu )\over\partial \phi }-\partial _\mu {\partial (\partial _\mu f^\mu )\over\partial (\partial _\mu \phi ) }$$ $$={\partial (\partial _\mu f^\mu )\over\partial \phi }-\partial _\mu {\partial (\partial _\mu f^\mu )\over\partial (\partial _\mu \phi ) }$$ ๅˆฉ็”จ $$df^\mu ={\partial f^\mu \over\partial \phi }\Big|_{x^\mu } d\phi +{\partial f^\mu \over \partial x^\nu }\Big|_\phi dx^\nu $$ $$\to \partial _\mu f^\mu ={\partial f^\mu \over\partial \phi }\Big|_{x^\mu } \partial _\mu \phi +{\partial f^\mu \over\partial x^\mu } \Big|_\phi $$ ้€ฒไธ€ๆญฅๅๅพฎๅˆ† $${\partial (\partial _\mu f^\mu )\over\partial (\partial _\mu \phi )} ={\partial f^\mu \over\partial \phi }\Big|_{x^\mu } \color{red}{ \text{dot cancelation analogy}}$$ ๅฆๅค– $${\partial (\partial _\mu f^\mu )\over\partial \phi }\Big|_{x^\mu}={ \partial \over\partial \phi }\Big|_{x^\mu} \left({\partial f^\mu \over\partial \phi }\Big|_{x^\mu } \partial _\mu \phi + {\partial f^\mu \over\partial x^\mu }\Big|_\phi\right) $$ $$={ \partial \over\partial \phi }\Big|_{x^\mu} \left({\partial f^\mu \over\partial \phi }\Big|_{x^\mu } \right)\partial _\mu \phi +{\partial \over\partial \phi}\Big|_{x^\mu }\left( {\partial f^\mu \over\partial x^\mu }\Big|_\phi \right)$$ $$={ \partial \over\partial \phi }\Big|_{x^\mu } {\partial f^\mu \over\partial \phi }\Big|_{x^\mu } \partial _\mu \phi +{ \partial \over\partial x^\mu }\Big|_\phi { \partial f^\mu \over\partial \phi} \Big|_{x^\mu } $$ $$=\partial _\mu \left( {\partial f^\mu \over\partial \phi} \right)\to \partial _\mu\text{ and }{\partial\over\partial \phi}\text{ commute}$$ ๆ‰€ไปฅ $${\partial (\partial _\mu f^\mu )\over\partial \phi} -\partial _\mu \left({\partial (\partial _\mu f^\mu )\over\partial (\partial _\mu \phi ) }\right)=\partial _\mu {\partial f^\mu \over\partial \phi} -\partial _\mu {\partial f^\mu \over\partial \phi} =0 $$ ๆ•… $${\partial (\mathcal{L}+\partial _\mu f^\mu )\over\partial \phi }-\partial _\mu \left({ (\partial (L+\partial _\mu f^\mu )\over\partial (\partial _\mu \phi )}\right)={\partial \mathcal{L}\over\partial \phi} -\partial _\mu \left({\partial \mathcal{L}\over\partial (\partial _\mu \phi ) }\right)=0$$ ๆทปๅŠ \(\partial _\mu f^\mu \)ไธๆœƒๆ”น่ฎŠEoMใ€‚