ๅ ด่ซไธญ็Lagrangian densityไธๅฏไธๆง
ๅ้ขๆๅฐ๏ผ็ถLagrangianๆทปๅ ไธๅๅฝๆธ\(f=f(q,t)\)ๆ้็ๅ
จๅพฎๅ้
df/dt๏ผไธฆไธๆๆน่ฎEoMใๅจๅ ด่ซไธญไนๆๅฐๆ็ๆจๅปฃ๏ผ\(\mathcal{L}\to \bar{\mathcal{L}} =\mathcal{L}+\partial _\mu f^\mu\) ๏ผไธๆจฃ่ฆๆณจๆ็ๆฏ\(f^\mu =f^\mu (\phi ,x^\mu )\)ๅช่ฝๆฏ\((\phi ,x^\mu )\)็ๅฝๆธใไธๆจฃๅฏไปฅๅพๅ
ฉๅ้จๅไพ็ใ็ฌฌไธ็จฎๆฏๆ็ฐกๅฎ็ๅพ่ฎๅ็้็๏ผ
$$\delta S=\delta \int (\mathcal{L}+\partial _\mu f^\mu ) d^4 x =\delta \left[\int \mathcal{L}d^4 x +\int \partial _\mu f^\mu d^4 x \right]$$
$$=\delta \int _a^b \mathcal{L}dt+\delta โฎ f^\mu d^3 S_\mu =\delta \int _a^b \mathcal{L}dt$$
ๅ
ถไธญ\(\int \partial _\mu f^\mu d^4 x =โฎ f^\mu d^3 S_\mu \)ๅฉ็จ้ซๆฏๅฎ็๏ผ\(\delta โฎ f^\mu d^3 S_\mu =0\)ไพ่ชๆผ่ฎๅ้็ไธ่ฎใ
ๅฆๅคไธ็จฎๆฏ็ดๆฅๅฑ้๏ผ่งๅฏ\(\mathcal{L}+\partial _\mu f^\mu\) ๆฏๅฆๆปฟ่ถณ
$${\partial (\mathcal{L}+\partial _\mu f^\mu )\over\partial \phi} -\partial _\mu {\partial (\mathcal{L}+\partial _\mu f^\mu )\over\partial (\partial _\mu \phi ) }=0$$
$${\partial (\mathcal{L}+\partial _\mu f^\mu )\over\partial \phi} -\partial _\mu {\partial (\mathcal{L}+\partial _\mu f^\mu )\over\partial (\partial _\mu \phi ) }= {\partial\mathcal{L}\over\partial \phi} -\partial _\mu {\partial L\over\partial (\partial _\mu \phi ) }+{\partial (\partial _\mu f^\mu )\over\partial \phi }-\partial _\mu {\partial (\partial _\mu f^\mu )\over\partial (\partial _\mu \phi ) }$$
$$={\partial (\partial _\mu f^\mu )\over\partial \phi }-\partial _\mu {\partial (\partial _\mu f^\mu )\over\partial (\partial _\mu \phi ) }$$
ๅฉ็จ
$$df^\mu ={\partial f^\mu \over\partial \phi }\Big|_{x^\mu } d\phi +{\partial f^\mu \over \partial x^\nu }\Big|_\phi dx^\nu $$
$$\to \partial _\mu f^\mu ={\partial f^\mu \over\partial \phi }\Big|_{x^\mu } \partial _\mu \phi +{\partial f^\mu \over\partial x^\mu } \Big|_\phi $$
้ฒไธๆญฅๅๅพฎๅ
$${\partial (\partial _\mu f^\mu )\over\partial (\partial _\mu \phi )} ={\partial f^\mu \over\partial \phi }\Big|_{x^\mu } \color{red}{ \text{dot cancelation analogy}}$$
ๅฆๅค
$${\partial (\partial _\mu f^\mu )\over\partial \phi }\Big|_{x^\mu}={ \partial \over\partial \phi }\Big|_{x^\mu} \left({\partial f^\mu \over\partial \phi }\Big|_{x^\mu } \partial _\mu \phi + {\partial f^\mu \over\partial x^\mu }\Big|_\phi\right) $$
$$={ \partial \over\partial \phi }\Big|_{x^\mu} \left({\partial f^\mu \over\partial \phi }\Big|_{x^\mu } \right)\partial _\mu \phi +{\partial \over\partial \phi}\Big|_{x^\mu }\left( {\partial f^\mu \over\partial x^\mu }\Big|_\phi \right)$$
$$={ \partial \over\partial \phi }\Big|_{x^\mu } {\partial f^\mu \over\partial \phi }\Big|_{x^\mu } \partial _\mu \phi +{ \partial \over\partial x^\mu }\Big|_\phi { \partial f^\mu \over\partial \phi} \Big|_{x^\mu } $$
$$=\partial _\mu \left( {\partial f^\mu \over\partial \phi} \right)\to \partial _\mu\text{ and }{\partial\over\partial \phi}\text{ commute}$$
ๆไปฅ
$${\partial (\partial _\mu f^\mu )\over\partial \phi} -\partial _\mu \left({\partial (\partial _\mu f^\mu )\over\partial (\partial _\mu \phi ) }\right)=\partial _\mu {\partial f^\mu \over\partial \phi} -\partial _\mu {\partial f^\mu \over\partial \phi} =0 $$
ๆ
$${\partial (\mathcal{L}+\partial _\mu f^\mu )\over\partial \phi }-\partial _\mu \left({ (\partial (L+\partial _\mu f^\mu )\over\partial (\partial _\mu \phi )}\right)={\partial \mathcal{L}\over\partial \phi} -\partial _\mu \left({\partial \mathcal{L}\over\partial (\partial _\mu \phi ) }\right)=0$$
ๆทปๅ \(\partial _\mu f^\mu \)ไธๆๆน่ฎEoMใ