่ถ…ๅฐŽ้‡ๅญ้›ป่…ฆ-็กฌ้ซ”ๆŠ€่ก“่ˆ‡ๅป ๅ•†ๆŒ‡ๅผ•(2025)

ๆœฌ็ฏ€็‚บ็ญ†่€…ๆŽจ่ซ–๏ผŒ้‚„ไธ็ขบๅฎšๆ˜ฏๅฆๆญฃ็ขบ
ๅ‰้ขๆๅˆฐ๏ผŒ็•ถLagrangianๆทปๅŠ ไธ€ๅ€‹ๅ‡ฝๆ•ธ\(f=f(q,t)\)ๆ™‚้–“็š„ๅ…จๅพฎๅˆ†้ …\({df\over dt}\)๏ผŒไธฆไธๆœƒๆ”น่ฎŠEoMใ€‚ๅœจๅ ด่ซ–ไธญไนŸๆœ‰ๅฐๆ‡‰็š„ๆŽจๅปฃ๏ผŒ\(\mathcal{L}\to \bar{\mathcal{L}} =\mathcal{L}+\partial _\mu f^\mu\) ๏ผŒไธ€ๆจฃ่ฆๆณจๆ„็š„ๆ˜ฏ\(f^\mu =f^\mu (\phi ,x^\mu )\)ๅช่ƒฝๆ˜ฏ\((\phi ,x^\mu )\)็š„ๅ‡ฝๆ•ธใ€‚ๅœจๆญคๆˆ‘ๅ€‘่จŽ่ซ–็œ‹็œ‹ๆ€Ž้บผๆจฃ็š„\(f=f(q,\dot{q} ,t)\)ๅ’Œ\(f^\mu =f^\mu (\phi ,\partial _\mu \phi ,x^\mu )\)ๆœ‰ๅฏ่ƒฝไธๆ”น่ฎŠEoMใ€‚ๅŽŸๅ‰‡ไธŠๆˆ‘ๅ€‘่ฆๆฑ‚ $$ {\partial \dot{f} \over\partial q}-{d\over dt} {\partial \dot{f} \over \partial \dot{q} } =0$$ $${\partial (\partial _\alpha f^\alpha )\over\partial \phi} -\partial _\mu \left({\partial (\partial _\alpha f^\alpha )\over\partial (\partial _\mu \phi )}\right )=0)$$ Extended dot cancellation for \(f=f(q,\dot{q} ,t)\) type $${\partial \dot{f} \over \partial \dot{q} } ={d\over dt} {\partial f\over\partial \dot{q} }+{\partial f\over\partial q}$$ $$ {\partial \dot{f} \over\partial q}-{d\over dt} {\partial \dot{f} \over \partial \dot{q} } =0$$ $$\to {d\over dt} {\partial f\over\partial q}-{d\over dt} \left({d\over dt} {\partial f\over\partial \dot{q} }+{\partial f\over\partial q}\right)=0$$ $$\to {d^2\over dt^2} {\partial f\over\partial \dot{q} }=0$$ $$\to f=(at+b) \dot{q} +g(q,t)$$


$${\partial (\partial _\alpha f^\alpha ) \over \partial (\partial _\mu \phi )} =\partial _\alpha {\partial f^\alpha\over\partial (\partial _\mu \phi )} +{\partial f^\mu \over\partial \phi }$$ $${\partial (\partial _\alpha f^\alpha )\over\partial \phi} -\partial _\mu \left({\partial (\partial _\alpha f^\alpha )\over\partial (\partial _\mu \phi )}\right )=0$$ $$\partial _\alpha {\partial f^\alpha\over\partial \phi} -\partial _\mu \left(\partial _\alpha {\partial f^\alpha\over\partial (\partial _\mu \phi )} +{\partial f^\mu \over\partial \phi }\right)=0$$ $$\partial _\mu \partial _\alpha {\partial f^\alpha\over\partial (\partial _\mu \phi )} =0$$ $$\partial _\mu \partial _\alpha {\partial f^\alpha\over\partial (\partial _\mu A^\gamma )} =0$$