่ถ ๅฐ้ๅญ้ป่ ฆ-็กฌ้ซๆ่ก่ๅป ๅๆๅผ(2025)
ๆฌ็ฏ็บ็ญ่
ๆจ่ซ๏ผ้ไธ็ขบๅฎๆฏๅฆๆญฃ็ขบ
ๅ้ขๆๅฐ๏ผ็ถLagrangianๆทปๅ ไธๅๅฝๆธ\(f=f(q,t)\)ๆ้็ๅ
จๅพฎๅ้
\({df\over dt}\)๏ผไธฆไธๆๆน่ฎEoMใๅจๅ ด่ซไธญไนๆๅฐๆ็ๆจๅปฃ๏ผ\(\mathcal{L}\to \bar{\mathcal{L}} =\mathcal{L}+\partial _\mu f^\mu\) ๏ผไธๆจฃ่ฆๆณจๆ็ๆฏ\(f^\mu =f^\mu (\phi ,x^\mu )\)ๅช่ฝๆฏ\((\phi ,x^\mu )\)็ๅฝๆธใๅจๆญคๆๅ่จ่ซ็็ๆ้บผๆจฃ็\(f=f(q,\dot{q} ,t)\)ๅ\(f^\mu =f^\mu (\phi ,\partial _\mu \phi ,x^\mu )\)ๆๅฏ่ฝไธๆน่ฎEoMใๅๅไธๆๅ่ฆๆฑ
$$ {\partial \dot{f} \over\partial q}-{d\over dt} {\partial \dot{f} \over \partial \dot{q} } =0$$
$${\partial (\partial _\alpha f^\alpha )\over\partial \phi} -\partial _\mu \left({\partial (\partial _\alpha f^\alpha )\over\partial (\partial _\mu \phi )}\right )=0)$$
Extended dot cancellation for \(f=f(q,\dot{q} ,t)\) type
$${\partial \dot{f} \over \partial \dot{q} } ={d\over dt} {\partial f\over\partial \dot{q} }+{\partial f\over\partial q}$$
$$ {\partial \dot{f} \over\partial q}-{d\over dt} {\partial \dot{f} \over \partial \dot{q} } =0$$
$$\to {d\over dt} {\partial f\over\partial q}-{d\over dt} \left({d\over dt} {\partial f\over\partial \dot{q} }+{\partial f\over\partial q}\right)=0$$
$$\to {d^2\over dt^2} {\partial f\over\partial \dot{q} }=0$$
$$\to f=(at+b) \dot{q} +g(q,t)$$
$${\partial (\partial _\alpha f^\alpha ) \over \partial (\partial _\mu \phi )} =\partial _\alpha {\partial f^\alpha\over\partial (\partial _\mu \phi )} +{\partial f^\mu \over\partial \phi }$$
$${\partial (\partial _\alpha f^\alpha )\over\partial \phi} -\partial _\mu \left({\partial (\partial _\alpha f^\alpha )\over\partial (\partial _\mu \phi )}\right )=0$$
$$\partial _\alpha {\partial f^\alpha\over\partial \phi} -\partial _\mu \left(\partial _\alpha {\partial f^\alpha\over\partial (\partial _\mu \phi )} +{\partial f^\mu \over\partial \phi }\right)=0$$
$$\partial _\mu \partial _\alpha {\partial f^\alpha\over\partial (\partial _\mu \phi )} =0$$
$$\partial _\mu \partial _\alpha {\partial f^\alpha\over\partial (\partial _\mu A^\gamma )} =0$$