Maximal Symmetry Action
ๆฌ็ฏ็บ็ญ่
ๆจ่ซ๏ผ้ไธ็ขบๅฎๆฏๅฆๆญฃ็ขบ
ๅ้ขๆๅฐLagrangian L็ไธๅฏไธๆง๏ผๆๅๅฏไปฅๆทปๅ ๅ
จๅพฎๅ้
\(\dot{f}\) ่ไธๆน่ฎEoMใไปฅไธไพ่จ่ซๆทปๅ \(\dot{f}\) ๅฐ่ซพ็นๅฎ็็ๅฝฑ้ฟใๆๅๅช้ๅ
ๅฐ\(L\to\bar{L} =L+\dot{f} \)ๆนๅฏซ็ต่ซๅณๅฏ
$$\delta S=\int {d\over dt} \left[{\partial \bar{L} \over \partial \dot{q} } \Delta q-\left({\partial \bar{L} \over \partial \dot{q} } \dot{q} -\bar{L} \right)\delta t\right] dt$$
$$=\int {d\over dt} \left[\left({\partial L\over \partial \dot{q} } +{\partial \dot{f} \over \partial \dot{q} } \right)\Delta q-\left(\left({\partial L\over \partial \dot{q} } +{\partial \dot{f} \over \partial \dot{q} } \right) \dot{q} -L-\dot{f} \right)\delta t\right] dt$$
ๆณจๆ\(f=f(q,t)\)๏ผ้ฉ็จdot cancellation๏ผ\({\partial \dot{f} \over \partial \dot{q} } ={\partial f\over\partial q}\)๏ผๅฆๅคไปฃๅ
ฅ\( p={\partial L\over \partial \dot{q}}\)๏ผๆไปฅ
$$\delta S=\int {d\over dt} \left[\left({\partial L\over \partial \dot{q} } +{\partial f\over\partial q}\right)\Delta q-\left(\left(p +{\partial f\over\partial q}\right) \dot{q} -L-\dot{f} \right)\delta t\right] dt$$
$$=\int {d\over dt} \left[\left({\partial L\over \partial \dot{q} } +{\partial f\over\partial q}\right)\Delta q-\left(p\dot{q} +{\partial f\over\partial q}\dot{q} -L-\dot{f} \right)\delta t\right] dt$$
$$=\int {d\over dt} \left[\left({\partial L\over \partial \dot{q} } +{\partial f\over\partial q}\right)\Delta q-\left(H -{\partial f\over\partial t} \right)\delta t\right] dt$$
ๅฆๆ็ถๅๆฌ็Lagrangian \(L\)ไธๅ
ทๅๅฐ็จฑๆง๏ผๆๅๆๆฉๆ้้\({\partial f \over \partial q}\)ๅไฟฎๆญฃ๏ผๅ ็บ\(f=f(q,t)\)ๆไปฅ\({\partial f\over\partial q}={\partial \over\partial q}f(q,t)\)๏ผๅช่ฆ\({\partial L\over \partial \dot{q} }\) ไธๆฏ\(\dot{q}\) ็ๅฝๆธ๏ผๆๅๅฏไปฅ็จ\({\partial f\over\partial q}=-{\partial L\over \partial \dot{q} } +const\)ๆถ้คๅพฎๅไธ็บ้ถ็้จๅ๏ผไฝฟๅพ\(\delta S=0\)๏ผๅฐๆ่ป่ทก\(q\)่ฎๅไธ่ฎ็ๅฎๆ้็บ
$${\partial L\over \partial \dot{q} } +{\partial f\over\partial q}=\bar{p}$$
๏ผๆๅๅฏไปฅ็จฑไฝๆญคLagrangian \(\bar{L}= L+\dot{f}\) ๅฐๆ็Action \(\bar{S}\)็บMaximal Symmetry Actionใ