่ซพ็นๅฎ็่ๅฐ็จฑๆง-ๆ็ฉบ่่ฝ้ๅ้ๅฎๆ
ๅจ่จ่ซๆ็ฉบๅฐ็จฑๆงๆ๏ผๆๅๅบๅฎ็ฉ็้\(\phi \)ไธๅ่ฎๅๅฝฑ้ฟ๏ผ\(\Psi=0\)ๆ๏ผๅชๅฉไธ
$$\partial _\mu \left[\left({\partial \mathcal{L}\over\partial \left(\partial _\mu \phi\right) } \partial _\alpha \phi - \delta ^\mu _\alpha L \right) ฮง^\alpha \right]=0$$
ๆๅๅฎ็พฉ่ฝ้ๅ้ๅผต้Energy momentum tensor \(T^{\mu\nu}\)
$$T^{\mu\nu}\equiv {{\partial L}\over{\partial \left( \partial _\nu \phi \right)}} \partial ^\mu \phi -\eta ^{\mu\nu} L$$
ๅฎๆๆต\(\partial _\nu T^{\mu\nu}=0\)ๅๅฅไปฃ่กจ
$$\partial _\nu T^{0\nu}=0่ฝ้ๅฎๆ$$
$$\partial _\nu T^{i\nu}=0ๅ้ๅฎๆ$$
ๅจ็ธๅฐ่ซไธญ๏ผไธๅ่ช็ฑ็ฒๅญ็่ฝ้ๅ้ๅผต้็บ
$$T^{\mu\nu}\equiv mU^\mu U^\nu$$
ๅ
ถไธญ
ๅฐๅคๅ
ธ็ฒๅญไพ่ชช๏ผๅๅฐ้็ธๅฐ่ซๆง็่ฉฑ๏ผ็ฒๅญ็่ป่ทก\(q\)ๅช่\(t\)ๆ้๏ผ
$$T^{\mu\nu}=T^{00}={\partial L\over \partial \dot{q} } \dot{q} -L=H$$
\(T^{00}\)ๅฐฑๆฏHamiltonian๏ผ่ฝ้ๅฎๆๅพ
$$\partial _\nu T^{0\nu}=\partial _0 T^{00}={dH \over dt}=0$$
่ฝ้ไธ้จๆ้ๆน่ฎ๏ผ
ๅคๅ
ธ็่ซพ็นๅฎ็่กจ่ฟฐ็บ
$$ๅคๅ ธ้็ธๅฐ่ซๆง$$ | $$็ธๅฐ่ซๆง$$ |
$$S=\int Ldt $$ | $$S=\int \mathcal{L}d^4 x$$ |
$$N\equiv {\partial L\over\partial \dot{q} _i } Q_i-\left({\partial L\over\partial \dot{q} _i } \dot{q} _i-L\right)T$$ | $$N^\mu \equiv {\partial \mathcal{L}\over\partial (\partial _\mu \alpha^\nu ) } \Psi^\nu-\left({\partial \mathcal{L}\over\partial (\partial _\mu \alpha^\nu ) } \partial _\alpha \alpha^\nu- \delta ^\mu _\alpha L\right) ฮง^\alpha $$ |