諾特定理與對稱性-時空與能量動量守恆
在討論時空對稱性時,我們固定物理量\(\phi \)不受變分影響,\(\Psi=0\)時,只剩下
$$\partial _\mu \left[\left({\partial \mathcal{L}\over\partial \left(\partial _\mu \phi\right) } \partial _\alpha \phi - \delta ^\mu _\alpha L \right) Χ^\alpha \right]=0$$
我們定義能量動量張量Energy momentum tensor \(T^{\mu\nu}\)
$$T^{\mu\nu}\equiv {{\partial L}\over{\partial \left( \partial _\nu \phi \right)}} \partial ^\mu \phi -\eta ^{\mu\nu} L$$
守恆流\(\partial _\nu T^{\mu\nu}=0\)分別代表
$$\partial _\nu T^{0\nu}=0能量守恆$$
$$\partial _\nu T^{i\nu}=0動量守恆$$
在相對論中,一個自由粒子的能量動量張量為
$$T^{\mu\nu}\equiv mU^\mu U^\nu$$
其中
對古典粒子來說,回到非相對論性的話,粒子的軌跡\(q\)只與\(t\)有關,
$$T^{\mu\nu}=T^{00}={\partial L\over \partial \dot{q} } \dot{q} -L=H$$
\(T^{00}\)就是Hamiltonian,能量守恆律
$$\partial _\nu T^{0\nu}=\partial _0 T^{00}={dH \over dt}=0$$
能量不隨時間改變!
古典的諾特定理表述為
| $$古典非相對論性$$ | $$相對論性$$ |
| $$S=\int Ldt $$ | $$S=\int \mathcal{L}d^4 x$$ |
| $$N\equiv {\partial L\over\partial \dot{q} _i } Q_i-\left({\partial L\over\partial \dot{q} _i } \dot{q} _i-L\right)T$$ | $$N^\mu \equiv {\partial \mathcal{L}\over\partial (\partial _\mu \alpha^\nu ) } \Psi^\nu-\left({\partial \mathcal{L}\over\partial (\partial _\mu \alpha^\nu ) } \partial _\alpha \alpha^\nu- \delta ^\mu _\alpha L\right) Χ^\alpha $$ |